Skip to main content

The Vegetation Silica Pool in a Developing Tidal Freshwater Marsh

Abstract

Tidal marshes play an important role in the estuarine Si cycle. Dissolved silicon (DSi) is taken up by marsh diatom communities and by tidal marsh vegetation. Delivery of DSi back to the estuary after biogenic silica dissolution potentially increases the resilience of the estuary against harmful effects of DSi depletion events. Tidal freshwater marsh vegetation, often dominated by reed (Phragmites australis) has previously been hypothesized to contribute to the Si buffering function of tidal marshes, by dissolution of reed biogenic Si (BSi) into the soil pore water and consequent seepage of DSi to the estuary. In this study the Si pool in the vegetation of a restored tidal freshwater marsh was quantified using species-based cover-biomass relationships and Si analyses. The Si pool in the aboveground biomass increased from 1.2 to 6.5 t km−2 during the first 6 years of colonization by tidal freshwater marsh species. Our results indicate that young tidal freshwater marshes have a high potential to build up a large vegetation Si pool quickly, mostly due to colonization by species that have both high Si concentrations and high biomass production (e. g. P. australis). This Si pool in vegetation could act both as a long-term sink for Si along estuaries (should Si remain buried in the sediments) or as a short-term source for DSi (should Si be dissolved to DSi).

This is a preview of subscription content, access via your institution.

References

  1. Kilham P (1971) Hypothesis concerning siliva and freshwater planktonic diatoms. Limnol Oceanogr 16(1):10–18

    Article  Google Scholar 

  2. Conley D, Schelske C, Stoermer E (1993) Modification of silica biogeochemistry with eutrophication in aquatic systems. Mar Ecol Prog Ser 101:179–192

    Article  CAS  Google Scholar 

  3. Ragueneau O, Conley D, Leynaert A, Longphuirts SN, Slomp C (2006) Role of diatoms in silicon cycling and coastal marine foodwebs. In: Ittekot V, Unger D, Humborg C, Ann NT (eds) The silicon cycle. Scope series 66. Islandpress Washington, pp 163–197

  4. Redfield AC (1934) On the proportions of organic derivations in sea water and their relation to the composition of plankton. In: Daniel R (ed) James johnstone memorial volume. University Press of Liverpool, pp 176–192

  5. Struyf E, Van Damme S, Gribsholt B, Middelburg JJ, Meire P (2005) Biogenic silica in tidal freshwater marsh sediments and vegetation (Schelde estuary, Belgium). Mar Ecol Prog Ser 303:51–60

    Article  CAS  Google Scholar 

  6. Struyf E, Temmerman S, Meire P (2007) Dynamics of biogenic Si in freshwater tidal marshes: Si regeneration and retention in marsh sediments (Scheldt estuary). Biogeochemistry 82(1):41–53

    Article  CAS  Google Scholar 

  7. Dame RF, Allen DM (1996) Between estuaries and the sea. J Exp Mar Biol Ecol 200(1–2):169–185

    Article  Google Scholar 

  8. Harsh J, Chorover J, Nizeyimana E (2002) Allophane and imogolite. In: JB D, DG S (eds) Soil mineralogy with environmental applications. vol Book Series SSSA No. 7. Madison, pp 291–322

  9. Drees L, Wilding L, Smeck N, Sankayi A (1989) Silica in soils: quartz and disordered silica polymorphs. In: Dixon JB WS (ed) Minerals in soil environments. vol SSSA Book series No.1. Madison, WI, pp 913–974

  10. Beckwith R, Reeve R (1963) Studies on soluble silica in soils. I. The sorption of silicic acid by soils and minerals. Aust J Soil Res 1:157–168

    Article  CAS  Google Scholar 

  11. Dietzel M (2002) The interaction of polysilicic and monosilicic acid with mineral surfaces. In: Stober I, Bucher K (eds) Water-rock interaction. Kluwer academic publishers, Dordrecht, pp 207–235

    Chapter  Google Scholar 

  12. Struyf E, Van Damme S, Gribsholt B, Meire P (2005) Freshwater marshes as dissolved silica recyclers in an estuarine environment (Schelde estuary, Belgium). Hydrobiologia 540:69–77

    Article  CAS  Google Scholar 

  13. Struyf E, Dausse A, Van Damme S, Bal K, Gribsholt B, Boschker HTS, Middelburg JJ, Meire P (2006) Tidal marshes and biogenic silica recycling at the land-sea interface. Limnol Oceanogr 51(2):838–846

    Article  CAS  Google Scholar 

  14. Jones L, Handreck K (1967) Silica in soils, plants, and animals. Adv Agron 19:107–149

    Article  CAS  Google Scholar 

  15. Raven JA (1983) The transport and function of silicon in plants. Biol Rev Camb Philos Soc 58(2):179–207

    Article  CAS  Google Scholar 

  16. Conley D, Sommer M, Meunier J, Kaczorek D, Saccone L (2006) Silicon in the terrestrial biogeosphere In: Ittekot V, Unger D, Humborg C, An NT (eds) The silicon cycle. Scope series 66. Islandpress, Washington, pp 13–28

    Google Scholar 

  17. Struyf E, Conley D (2012) Emerging understanding of the ecosystem silica buffer. Biogeochemistry 107:9–18

    Article  CAS  Google Scholar 

  18. Lucas Y, Luizao FJ, Chauvel A, Rouiller J, Nahon D (1993) The relation between biological-activity of the rain-forest and mineral-composition of soils. Science 260(5107):521–523

    Article  CAS  Google Scholar 

  19. Berthelsen S, Noble A, Garside A (2001) Silicon research down under: past, present and future. In: Datnoff L, Snyder G, Korndörfer G (eds) Silicon in agriculture. Elsevier, Amsterdam, pp 241–265

    Chapter  Google Scholar 

  20. Lanning F, Eleuterius L (1983) Silica and ash in tissue of some coastal plants. Ann Bot-Lond 51(6):835–850

    CAS  Google Scholar 

  21. Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci USA 91(1):11–17

    Article  CAS  Google Scholar 

  22. Blecker SW, McCulley RL, Chadwick OA, Kelly EF (2006) Biologic cycling of silica across a grassland bioclimosequence. Glob Biogeochem Cycles 20(3):11

    Article  Google Scholar 

  23. Borrelli N, Alvarez MF, Osterrieth ML, Marcovecchio JE (2010) Silica content in soil solution and its relation with phytolith weathering and silica biogeochemical cycle in Typical Argiudolls of the Pampean Plain, Argentina-a preliminary study. J Soils Sediments 10(6):983–994

    Article  CAS  Google Scholar 

  24. Borrelli N, Osterrieth M, Romanelli A, Alvarez M, Cionchi J, Massone H (2011) Biogenic silica in wetlands and their relationship with soil and groundwater biogeochemistry in the Southeastern of Buenos Aires Province, Argentina. Environ Earth Sci:1-12

  25. Melzer S, Chadwick O, Hartshorn A, Khomo L, Knapp A, Kelly E (2011) Lithologic controls on biogenic silica cycling in South African savanna ecosystems. Biogeochemistry 108:317–334

    Article  Google Scholar 

  26. Norris AR, Hackney CT (1999) Silica content of a mesohaline tidal marsh in North Carolina. Estuar Coast Shelf Sci 49(4):597–605

    Article  CAS  Google Scholar 

  27. Querné J, Ragueneau O, Poupart N (2012) In situ biogenic silica variations in the invasive salt marsh plant, Spartina alterniflora: a possible link with environmental stress. Plant Soil 352:157–171. doi:10.1007/s11104-011-0986-5

    Article  Google Scholar 

  28. Struyf E, Van Damme S, Gribsholt B, Bal K, Beauchard O, Middelburg JJ, Meire P (2007) Phragmites australis and silica cycling in tidal wetlands. Aquat Bot 87(2):134–140

    Article  CAS  Google Scholar 

  29. Vieillard AM, Fulweiler RW, Hughes ZJ, Carey JC (2011) The ebb and flood of silica: quantifying dissolved and genic silica fluxes from a temperate salt marsh. Estuar Coast Shelf Sci 95:415–423

    Article  CAS  Google Scholar 

  30. Van den Bergh E, van Damme S, Graveland J, Jong Dd, Baten I, Meire P (2005) Ecological rehabilitation of the schelde estuary (The Netherlands–Belgium; Northwest Europe): linking ecology, safety against floods, and accessibility for port development. Restor Ecol 13(1):204–214

    Article  Google Scholar 

  31. Jacobs S, Struyf E, Maris T, Meire P (2008) Spatiotemporal aspects of silica buffering in restored tidal marshes. Estuar Coast Shelf Sci 80(1):42–52

    Article  CAS  Google Scholar 

  32. Wollast R (1988) The scheldt estuary. In: Salomon W, Bayne W, Duursma E, Forstner U (eds) Pollution of the North-Sea: an assessment. Springer, Berlin, pp 183–193

    Google Scholar 

  33. Meire P, Ysebaert T, Van Damme S, Van den Bergh E, Maris T, Struyf E (2005) The Scheldt estuary: a description of a changing ecosystem. Hydrobiologia 540:1–11

    Article  CAS  Google Scholar 

  34. Soetaert K, Middelburg JJ, Heip C, Meire P, Van Damme S, Maris T (2006) Long-term change in dissolved inorganic nutrients in the heterotrophic Scheldt estuary (Belgium, The Netherlands). Limnol Oceanogr 51(1):409–423

    Article  CAS  Google Scholar 

  35. Maris T, Cox TJS, Temmerman S, De Vleeschauwer P, Van Damme S, De Mulder T, Van den Bergh E, Meire P (2007) Tuning the tide: creating ecological conditions for tidal marsh development in a flood control area. Hydrobiologia 588:31–43

    Article  Google Scholar 

  36. Beauchard O, Jacobs S, Cox TJS, Maris T, Vrebos D, Van Braeckel A, Meire P (2011) A new technique for tidal habitat restoration: evaluation of its hydrological potentials. Ecol Eng 37(11):1849–1858

    Article  Google Scholar 

  37. Jacobs S, Beauchard O, Struyf E, Cox TJS, Maris T, Meire P (2009) Restoration of tidal freshwater vegetation using controlled reduced tide (CRT) along the Schelde Estuary (Belgium). Estuar Coast Shelf Sci 85(3):368–376

    Article  Google Scholar 

  38. Flombaum P, Sala OE (2007) A non-destructive and rapid method to estimate biomass and aboveground net primary production in arid environments. J Arid Environ 69(2):352–358

    Article  Google Scholar 

  39. Rittenhouse L-R, Sneva F-A (1977) A technique for estimating big sagebrush (Artemisia tridentata) production. J Range Manag 30:68–70

    Article  Google Scholar 

  40. Johnson PS, Johnson CL, West NE (1988) Estimation of phytomass for ungrazed crested wheatgrass plants using allometric equations. J Range Manag 41(5):421–425

    Article  Google Scholar 

  41. Navar J, Mendez E, Najera A, Graciano J, Dale V, Parresol B (2004) Biomass equations for shrub species of Tamaulipan thornscrub of North-eastern Mexico. J Arid Environ 59(4):657–674

    Article  Google Scholar 

  42. Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot-Lond 96(6):1027–1046

    Article  CAS  Google Scholar 

  43. Struyf E, Conley DJ (2009) Silica: an essential nutrient in wetland biogeochemistry. Front Ecol Environ 7(2):88–94

    Article  Google Scholar 

  44. Borrelli N, Honaine MF, Altamirano SM, Osterrieth M (2011) Calcium and silica biomineralizations in leaves of eleven aquatic species of the Pampean Plain, Argentina. Aquat Bot 94(1):29–36

    Article  CAS  Google Scholar 

  45. Lucas PW, Turner IM, Dominy NJ, Yamashita N (2000) Mechanical defences to herbivory. Ann Bot-Lond 86(5):913–920

    Article  Google Scholar 

  46. Melzer S, Knapp A, Kirkman K, Smith M, Blair J, Kelly E (2010) Fire and grazing impacts on silica production and storage in grass dominated ecosystems. Biogeochemistry 97(2):263–278. doi:10.1007/s10533-009-9371-3

    Article  CAS  Google Scholar 

  47. Craft C, Broome S, Campbell C (2002) Fifteen years of vegetation and soil development after brackish-water marsh creation. Restor Ecol 10(2):248–258

    Article  Google Scholar 

  48. Borja A, Dauer DM, Elliott M, Simenstad CA (2010) Medium- and long-term recovery of estuarine and coastal ecosystems: patterns, rates and restoration effectiveness. Estuar Coasts 33(6):1249–1260

    Article  Google Scholar 

  49. Smith SM, Warren RS (2012) Vegetation responses to tidal restoration. In: Roman CT, Burdick DM (eds) Tidal marsh restoration. The science and practice of ecological restoration. Island Press, pp 59–80

  50. Moreno-Mateos D, Power ME, Comin FA, Yockteng R (2012) Structural and functional loss in restored wetland ecosystems. PLoS Biol 10(1). doi:10.1371/journal.pbio.1001247

  51. Alexandre A, Meunier JD, Colin F, Koud JM (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochim Acta 61(3):677–682

    Article  CAS  Google Scholar 

  52. Bouchard M, Jolicoeur S (2000) Chemical weathering studies in relation to geomorphological research in southeastern Canada. Geomorphology 32(3–4):213–238

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jacobs.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jacobs, S., Müller, F., Teuchies, J. et al. The Vegetation Silica Pool in a Developing Tidal Freshwater Marsh. Silicon 5, 91–100 (2013). https://doi.org/10.1007/s12633-012-9136-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-012-9136-9

Keywords

  • Silicon
  • Biomass measurement
  • Restoration
  • Succession
  • Silica cycling
  • Controlled reduced tide
  • Phragmites australis