Skip to main content

Silicate Release from Sand-Manipulated Sediment Cores: Biogenic or Adsorbed Si?

Abstract

The influence of an addition of either sand and/or spring-bloom algae on the efflux of nutrients from intact sediment cores from the Baltic Sea was studied in a flow-through experiment. The addition of sand significantly increased the efflux of silicon (Si) from sediment, but the algal addition did not. The effects on phosphorus (P) were not as clear, and fluxes of nitrogen (NH4 and NO2 + 3) remained relatively unaffected by the additions. The small effect of the algal addition was caused by the short time-period covered by the experiment and possibly by adsorption of released Si by the sediment. A follow-up bottle experiment showed that despite the apparently lower content of easily available Si and biogenic silica, BSi, in the sand, the sand-induced Si efflux was caused by release of Si from the sand itself, rather than by indirectly increasing the dissolution of BSi present in the sediment.

This is a preview of subscription content, access via your institution.

References

  1. Hecky R, Mopper K, Kilham P, Degens E (1973) The amino acid and sugar composition of diatom cell walls. Mar Biol 19:323–331

    Article  CAS  Google Scholar 

  2. Hurd D (1983) Physical and chemical properties of siliceous skeletons. In: Aston S (ed) Silicon geochemistry and biogeochemistry. Academic Press, London, pp 187–244

    Google Scholar 

  3. Lewin J (1961) The dissolution of silica from diatom walls. Geochim Cosmochim Acta 21:182–198

    Article  CAS  Google Scholar 

  4. Tréguer P, Pondaven P (2000) Silica control of carbon dioxide. Nature 406:358–359

    Article  Google Scholar 

  5. Smetacek V (1980) Annual cycling of sedimentation in relation to plankton ecology in western Kiel Bight. Ophelia Suppl 1:65–76

    CAS  Google Scholar 

  6. Ragueneau O, Chavaud L, Leynaert A, Thozeau G, Paulet Y-M, Bonnet S, Lorrain A, Grall J, Corvaisier R, Le Hir M, Jean F, Clavier J (2002) Direct evidence of a biologically active coastal silicate pump: ecological implications. Limnol Oceanogr 47:1849–54

    Article  Google Scholar 

  7. Lerman A (1988) Weathering rates and major transport processes: an introduction. In: Lerman A, Meybeck M (eds) Physical and chemical weathering in geochemical cycles. Kluwer Academic Publishers, pp 1–10

  8. Hingston FJ, Atkinson RJ, Posner AM, Quirk JP (1967) Specific adsorption of anions. Nature 215:1459–1461

    Article  CAS  Google Scholar 

  9. Golterman HL (1975) Physiological limnology. An approach to the physiology of lake ecosystems. Elsevier Scientific Publishing Company, pp 124–133

  10. Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes: a review. J Plant Nutr Soil Sci 169:294–314

    Google Scholar 

  11. Gehlen M, Van Raaphorst W (1993) Early diagenesis of silica in sandy North Sea sediments: quantification of the solid phase. Mar Chem 42:71–83

    Article  CAS  Google Scholar 

  12. Gehlen M, Van Raaphorst W (2002) The role of adsorption-desorption reactions in controlling interstitial Si(OH)4 concentrations and enhancing Si(OH)4 turn-over in shallow shelf areas. Cont Shelf Res 22:1529–47

    Article  Google Scholar 

  13. Emery KO (1968) Relict sediments on continental shelves of the world. Am Assoc Pet Geol Bull 52:445–464

    Google Scholar 

  14. Ehrenhauss S, Huettel M (2004) Advective transport and decomposition of chain-forming planktonic diatoms in permeable sediments. J Sea Res 52:179–197

    Article  CAS  Google Scholar 

  15. Ehrenhauss S, Witte U, Buhring SI, Huettel M (2004) Effect of advective pore water transport on distribution and degradation of diatoms in permeable North Sea sediments. Mar Ecol-Prog Ser 271:99–111

    Article  Google Scholar 

  16. Koroleff F (1983) In: Grasshoff K, Ehrhardt M, Kremling K (eds) Methods of seawater analysis. Verlag Chimie, Weinheim

    Google Scholar 

  17. Nielsen LP (1992) Denitrification in sediment determined from nitrogen isotope pairing. FEMS Microbiol Lett 86: 357–362

    Article  CAS  Google Scholar 

  18. DeMaster D (1981) The supply and accumulation of silica in the marine environment. Geochim Cosmochim Acta 45:1715–1732

    Article  CAS  Google Scholar 

  19. Mullin J, Riley J (1955) The colorimetric determination of silicate with special reference to sea and natural waters. Anal Chim Acta 12:162–176

    Article  CAS  Google Scholar 

  20. Lignell R, Heiskanen AS, Kuosa H, Gundersen K, Kuuppo-Leinikki P, Pajuniemi R, Uitto A (1993) Fate of a phytoplankton spring bloom—sedimentation and carbon flow in the planktonic food web in the northern Baltic. Mar Ecol-Prog Ser 94:239–252

    Article  Google Scholar 

  21. Conley D J, Johnstone RW (1995) Biogeochemistry of N, P and Si in Baltic Sea sediments—response to a simulated deposition of a spring diatom bloom. Mar Ecol Prog Ser 122: 265–276

    Article  CAS  Google Scholar 

  22. Heiskanen AS, Tallberg P (1999) Sedimentation and particulate nutrient dynamics along a coastal gradient from a Fjord-like bay to the open sea. Hydrobiologia 393:127–140

    Article  CAS  Google Scholar 

  23. Conley DJ, Kilham SS, Theriot E (1989) Differences in silica content between marine and fresh-water diatoms. Limnol Oceanogr 34:205–213

    Article  CAS  Google Scholar 

  24. Tallberg P, Lehtoranta J (2005) Changes in phosphorus and silicon fluxes and pools at the sediment surface following an experimental spring bloom deposition. Verh Internat Verein Limnol 29:528–530

    CAS  Google Scholar 

  25. Azam F, Chisholm S (1976) Silicic acid uptake and incorporation by natural marine phytoplankton populations. Limnol Oceanogr 21:427–435

    Article  CAS  Google Scholar 

  26. Brzezinski M, Nelson D (1989) Seasonal-changes in the silicon cycle within a gulf-stream warm-core ring. Deep-Sea Res Part A, Oceanogr Res Pap 36:1009–1030

    Article  CAS  Google Scholar 

  27. Kelderman P, Lindeboom H, Klein J (1988) Light dependent sediment-water exchange of dissolved reactive phosphorus and silicon in a producing microflora mat. Hydrobiologia 159:137–147

    Article  CAS  Google Scholar 

  28. Srithongouthai S, Sonoyama Y-I, Tada K, Montani S (2003) The influence of environmental variability on silicate exchange rates between sediment and water in a shallow-water coastal ecosystem, the Seto Inland Sea, Japan. Mar Pollut Bull 47:10–17

    Article  CAS  Google Scholar 

  29. Tallberg P, Lukkari K, Räike A, Lehtoranta J, Leivuori M (2009) Applicability of a sequential P fractionation procedure to Si in sediment. J Soil Sed 9:594–603

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Tallberg.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tallberg, P., Lehtoranta, J. & Hietanen, S. Silicate Release from Sand-Manipulated Sediment Cores: Biogenic or Adsorbed Si?. Silicon 5, 67–74 (2013). https://doi.org/10.1007/s12633-012-9127-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-012-9127-x

Keywords

  • Silicon
  • Sediment
  • Sand
  • Phosphorus
  • Nitrogen