Skip to main content

Separating Biogenic and Adsorbed Pools of Silicon in Sediments Using Bayesian Inference

Abstract

There are several potentially mobile pools of silicon in sediment, e.g. biogenic Si (BSi), dissolved Si and adsorbed Si (AdSi) which makes the studying of a single pool very difficult because of the interference caused by other Si pools. In order to evaluate the impact that different Si pools have on the Si cycle of water ecosystems, it is important to have reliable estimates of the pool sizes. The objective of this study was to estimate the joint concentration distributions of two pools, AdSi and BSi, in, of a small catchment area in southern Finland. The potential correlation between BSi and AdSi was studied to find out if the AdSi pool can be inferred from the total pool (BSi + AdSi). The potential error caused by simultaneous extraction of AdSi in BSi determinations was also investigated. Because all extraction methods include variability due to measurement imprecision and inter-sample variation, the different sources of variation were explicitly separated to be able to infer the underlying true variation of AdSi and BSi within the study area. We have utilized Bayesian inference for this task.

This is a preview of subscription content, access via your institution.

References

  1. Willen E (1991) Planctonic diatoms—an ecological review. Algol Stud 62:69–106

    Google Scholar 

  2. Tallberg P, Lukkari K, Räike A, Lehtoranta J, Leivuori M (2009) Applicability of a sequential P fractionation procedure to Si in sediment. J Soil Sediment 9:594–603

    Article  CAS  Google Scholar 

  3. Alexandre A, Meunier J, Colin F, Koud J (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochim Acta 61:677–682

    Article  CAS  Google Scholar 

  4. Koski-Vähälä J, Hartikainen H, Tallberg P (2001) Phosphorus mobilization from various sediment pools in response to increased pH and silicate concentration. J Environ Qual 30:546–552

    Article  Google Scholar 

  5. Tuominen L, Hartikainen H, Kairesalo T, Tallberg P (1998) Increased bioavailability of sediment phosphorus due to silicate enrichment. Water Res 32:2001–2008

    Article  CAS  Google Scholar 

  6. Hartikainen H, Pitkänen M, Kairesalo T, Tuominen L (1996) Co-occurrence and potential chemical competition of phosphorus and silicon in lake sediment. Water Res 30:2472–2478

    Article  CAS  Google Scholar 

  7. Tallberg P (1999) The magnitude of Si dissolution from diatoms at the sediment surface and its potential impact on P mobilization. Arch Hydrobiol 144:429–438

    CAS  Google Scholar 

  8. Tallberg P, Koski-Vähälä J (2001) Silicate-induced phosphate release from surface sediment in eutrophic lakes. Arc Hydrobiol 151:221–245

    CAS  Google Scholar 

  9. Barbosa-Filho M, Snyder GH, Elliott CL, Datnoff LE (2001) Evaluation of soil test procedures for determining rice-available silicon. Commun Soil Sci Plant Anal 32:1779–1792

    Article  CAS  Google Scholar 

  10. de Lima Rodrigues L, Daroub SH, Rice RW, Snyder GH (2003) Comparison of three soil test methods for estimating plant-available silicon. Commun Soil Sci Plant Anal 34:2059–2071

    Article  Google Scholar 

  11. Fox RL, Silva JA, Younge OR, Plucknett DL, Sherman GD (1967) Soil and plant silicon and silicate response by sugar cane. Soil Sci Soc Am J 31:775–779

    Article  CAS  Google Scholar 

  12. Jensen H, Thamdrup B (1993) Iron-bound phosphorus in marine sediments as measured by bicarbonate-dithionite extraction. Hydrobiologia 253:47–59

    Article  CAS  Google Scholar 

  13. Saccone L, Conley DJ, Koning E, Sauer D, Sommer M, Kaczorek D, Blecher SW, Kelly EF (2007) Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems. Eur J Soil Sci 58:1446–1459

    Article  CAS  Google Scholar 

  14. Khalid RA, Silva JA, Fox RL (1978) Residual effects of calcium silicate in tropical soils: II. Biological extraction of residual soil silicon. Soil Sci Soc Am J 42:94–97

    Article  Google Scholar 

  15. Nonaka K, Takahashi K (1988) A method of measuring available silicates in paddy soils. Jpn Agric Res Q 22:91–95

    CAS  Google Scholar 

  16. Haysom MBC, Chapman LS (1975) Some aspects of calcium silicate trials at Mackay. Proc Aust Soc Sugar Cane Technol 42:117–122

    CAS  Google Scholar 

  17. Nonaka K, Takahashi K (1992) A method of assessing the need of silicate fertilizers in paddy soils. XIV Int Congr Soil Sci Kyoto Jpn 4:513–514

    Google Scholar 

  18. Snyder GH (2001) In: Datnoff LE, Snuder GH, Korndörfer GH (ed) Methods for silicon analysis in plants, soils, and fertilizer. Silicon in Agriculture: Elsevier Science B.V

  19. Sauer D, Saccone L, Conley DJ, Herrmann L, Sommer M (2006) Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry 80:89–108

    Article  CAS  Google Scholar 

  20. Mortlock RA, Froelich PN (1989) A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Res 36:1415–1426

    Article  CAS  Google Scholar 

  21. DeMaster DJ (1981) The supply and accumulation of silica in the marine environment. Geochim Cosmochim Acta 45:1715–1732

    Article  CAS  Google Scholar 

  22. Cornelis J-T, Titeux H, Ranger J, Delvaux B (2011) Identification and distribution of the readily soluble silicon pool in a temperate forest soil below three distinct tree species. Plant Soil 342:369–378

    Article  CAS  Google Scholar 

  23. del Campillo MC, Torrent J (1992) A rapid acid-oxalate extraction procedure for the determination of active Fe-oxide forms in calcareous soils. z Pflanzenernähr Bodenk 155:437–440

    Article  Google Scholar 

  24. Liu D, Clark JD, Crutchfield JD, Sims JL (1996) Effect of pH of ammonium oxalate extracting solutions on prediction of plant available molybdenum in soil. Commun Soil Sci Plant Anal 27:2511–2541

    Article  CAS  Google Scholar 

  25. Cheng V, Arhonditsis G, Brett M (2010) A revaluation of lake-phosphorus loading models using a Bayesian hierarchical framework. Ecol Res 25:59–76

    Article  Google Scholar 

  26. Burkitt LL, Dougherty WJ, Corkrey R, Broad ST (2011) Modeling the risk of phosphorus runoff following single and split phosphorus fertilizer applications in two contrasting catchments. J Environ Qual 40:548–558

    Article  CAS  Google Scholar 

  27. Iden SC, Delay M, Frimmel FH, Durner W (2008) Assessing contaminant mobilization from waste materials: Application of Bayesian parameter estimation to batch extraction tests at varying liquid-to-solid ratios. Environ Sci Technol 42:3717–3723

    Article  CAS  Google Scholar 

  28. Iden SC, Durner W (2008) Multiple batch extraction test to estimate contaminant release parameters using a Bayesian approach. J Contam Hydrol 95:168–182

    Article  CAS  Google Scholar 

  29. Broad ST, Corkrey R (2011) Estimating annual generation rates of total P and total N for different land uses in Tasmania, Australia. J Environ Manage 92:1609–1617

    Article  CAS  Google Scholar 

  30. Jaynes ET (2003) Probability theory: the logic of science. Cambridge University Press

  31. O’Hagan A, Buck CE, Daneshkhah A, Eiser JR, Garthwaite PH, Jenkinson DJ, Oakley JE, Rakow T (2006) Uncertain judgements: eliciting experts’ probabilities. Wiley, West Sussex

    Book  Google Scholar 

  32. Gelman A, Carlin JB, Stern HS, Rubin DB (2003) Bayesian data analysis, 2nd edn. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  33. Hilborn R, Liermann M (1998) Standing on the shoulders of giants: learning from experience in fisheries. Rev Fish Biol Fish 8:273–283

    Article  Google Scholar 

  34. Gelman A (2003) A Bayesian formulation of exploratory data analysis and goodness-of-fit testing. Int Stat Rev 71:369–382

    Article  Google Scholar 

  35. Hoeting JA, Madigan D, Raftery AE, Volinsky CT (1999) Bayesian model averaging: a tutorial. Stat Sci 14:382–401

    Article  Google Scholar 

  36. McCarthy MA, Masters P (2005) Profiting from prior information in Bayesian analyses of ecological data. J Appl Ecol 42:1012–1019

    Article  Google Scholar 

  37. O’Hagan A (2011) Probabilistic uncertainty specification: overview, elaboration techniques and their application to a mechanistic model of carbon flux. Environ Model Softw. doi:10.1016/j.envsoft.2011.03.003

    Google Scholar 

  38. Jeffreys H (1939) Theory of probability. Oxford University Press

  39. Jeffreys H (1946) An invariant form for the prior probability in estimation problems. Proc R Soc Lond A 186:453–461

    Article  CAS  Google Scholar 

  40. Gelman A (2009) Bayes, Jeffreys, prior distributions and the philosophy of statistics. Stat Sci 24:176–178

    Article  Google Scholar 

  41. Bernardo JM, Smith AFM (1994) Bayesian theory. Wiley, New York

    Book  Google Scholar 

  42. Gelman A (1996) Bayesian model- building by pure thought: some principles and examples. Stat Sinica 215–232

  43. Gelman A (2006) Prior distributions for variance parameters in hierarchical models (Comment on Article by Browne and Draper). Bayesian Anal 1:515–534

    Article  Google Scholar 

  44. Evans M, Jang GH (2011) Weak informativity and the information in one prior relative to another. Stat Sci 26:423–439

    Article  Google Scholar 

  45. Lukkari K (2008) Chemical characterictics and behaviour of sediment phosphorus in the northeastern Baltic Sea. Finnish Institute of Marine Research-Contributions 17

  46. Lukkari K, Hartikainen H, Leivuori M (2007) Fractionation of sediment phosphorus revisited. I: Fractionation steps and their biogeochemical basis. Limnol Oceanogr Method 5:433–444

    Article  CAS  Google Scholar 

  47. Lukkari K, Leivuori M, Hartikainen H (2007) Fractionation of sediment phosphorus revisited: II. Changes in phosphorus fractions during sampling and storing in the presence or absence of oxygen. Limnol Oceanogr Method 5:445–456

    Article  CAS  Google Scholar 

  48. Jackson ML, Lim CH, Zelazny LW (1986) In: Klute A (ed) Oxides, hydroxides, and aluminosilicates, methods of soil analysis. Part 1. 2nd edn. p 101–150

  49. Schwertmann U (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde 105:194–202

    Article  CAS  Google Scholar 

  50. de Finetti B (1975) Theory of probability, 1st edn. Wiley, Bristol

    Google Scholar 

  51. Lindén A, Mäntyniemi S (2011) Using negative binomial distribution to model overdispersion in ecological count data. Ecology 92:1414–1421

    Article  Google Scholar 

  52. Gelman A, Meng XL, Stern HS (1996) Posterior predictive assessment of model fitness via realized discrepancies (with discussion). Stat Sinica 6:733–807

    Google Scholar 

  53. Gilks WR, Richardson S, Spiegelhalter DJ (1996) Markov Chain Monte Carlo in practice. Chapman and Hall, London

    Google Scholar 

  54. Carlin BP, Chib S (1995) Bayesian model choice via Markov-chain Monte-Carlo methods. J Roy Stat Soc 57:473–484

    Google Scholar 

  55. Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS—a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 10:325–337

    Article  Google Scholar 

  56. Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–472

    Article  Google Scholar 

  57. Fraysse F, Pokrovsky O, Schott J, Meunier J (2009) Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chem Geol 258:197–206

    Article  CAS  Google Scholar 

  58. Mäntyniemi S, Kuikka S, Rahikainen M, Kell L, Kaitala V (2009) The value of Information in fisheries management: North Sea herring as an example. ICES J Mar Sci 66:2278–2283

    Article  Google Scholar 

  59. Juntunen T, Vanhatalo J, Peltonen H, Mäntyniemi S (2011) Bayesian spatial multispecies modeling to assess pelagic fish stocks from acoustic and trawl survey data. ICES J Mar Sci 69:95–104

    Article  Google Scholar 

  60. Pulkkinen H, Mäntyniemi S, Kuikka S, Levontin P (2011) More knowledge with the same amount of data: advantage of accounting for parameter correlations in hierarchical meta-analyses. Mar Ecol Prog Ser 443:29–37

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virpi Siipola.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Siipola, V., Mäntyniemi, S., Lehtimäki, M. et al. Separating Biogenic and Adsorbed Pools of Silicon in Sediments Using Bayesian Inference. Silicon 5, 53–65 (2013). https://doi.org/10.1007/s12633-012-9120-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-012-9120-4

Keywords

  • Biogenic silica
  • Adsorbed silicon
  • Sediment
  • Bayes
  • Hierarchical modeling