Skip to main content

Bulk Sediment and Diatom Silica Carbon Isotope Composition from Coastal Marine Sediments off East Antarctica

Abstract

Organic carbon occluded in diatom silica is assumed to be protected from degradation in the sediment. δ13C from diatom carbon (δ13C(diatom)) therefore potentially provides a signal of conditions during diatom growth. However, there have been few studies based on δ13C(diatom). Numerous variables can influence δ13C of organic matter in the marine environment (e.g., salinity, light, nutrient and CO2 availability). Here we compare δ13C(diatom) and δ13C(TOC) from three sediment records from individual marine inlets (Rauer Group, East Antarctica) to (i) investigate deviations between δ13C(diatom) and δ13C(TOC), to (ii) identify biological and environmental controls on δ13C(diatom) and δ13C(TOC), and to (iii) discuss δ13C(diatom) as a proxy for environmental and climate reconstructions. The records show individual δ13C(diatom) and δ13C(TOC) characteristics, which indicates that δ13C is not primarily controlled by regional climate or atmospheric CO2 concentration. Since the inlets vary in water depths offsets in δ13C are probably related to differences in water column stratification and mixing, which influences redistribution of nutrients and carbon within each inlet. In our dataset changes in δ13C(diatom) and δ13C(TOC) could not unequivocally be ascribed to changes in diatom species composition, either because the variation in δ13C(diatom) between the observed species is too small or because other environmental controls are more dominant. Records from the Southern Ocean show depleted δ13C(diatom) values (1–4 ‰) during glacial times compared to the Holocene. Although climate variability throughout the Holocene is low compared to glacial/interglacial variability, we find variability in δ13C(diatom), which is in the same order of magnitude. δ13C of organic matter produced in the costal marine environment seems to be much more sensitive to environmental changes than open ocean sites and δ13C is of strongly local nature.

This is a preview of subscription content, access via your institution.

References

  1. Mackie E, Lloyd JM, Leng MJ, Bentley MJ, Arrowsmith C (2007) Assessment of δ13C and C/N ratios of bulk organic matter as paleosalinity indicators in Holocene and late glacial isolation basin sediments, northwest Scotland. J Quat Sci 22:579–591

    Article  Google Scholar 

  2. Wagner T, Herrle J, Sinninghe Damste J, Schouten S, Stüsser I, Hofmann P (2008) Rapid warming and salinity changes Cretaceous surface waters in the North Atlantic. Geology 36:203–206

    Article  CAS  Google Scholar 

  3. Degens ET, Guillard RR, Sackett WM, Helleburst JA (1968) Metabolic fractionation of carbon isotopes in marine plankton: temperature and respiration experiments. Deep-Sea Res 15:1–9

    CAS  Google Scholar 

  4. Popp B, Laws E, Bidigare RR, Dore JE, Hanson K, Wakeham SG (1998) Effect on phytoplankton cell geometry on carbon isotopic fractionation. Geochim Cosmochim Acta 62:69–77

    Article  CAS  Google Scholar 

  5. Gibson JAE, Trull T, Nichols PD, Summons RE, McMinn A (1999) Sedimentation of 13C-rich organic matter from Antarctic sea-ice algae: a potential indicator of past sea-ice extent. Geology 27:331–334

    Article  CAS  Google Scholar 

  6. Laws EA, Popp BN, Cassar N, Tanimoto J (2002) 13C discrimination pattern in oceanic phytoplankton: likely influence of CO2 concentrating mechanisms, and implications for paleoreconstructions. Funct Plant Biol 29:323–333

    Article  CAS  Google Scholar 

  7. Lourey M, Trull TW, Tilbrook B (2004) Sensitivity of Southern Ocean suspended and sinking organic matter to temperature, nutrient utilisation, and atmospheric CO2. Deep-Sea Res I 51:281–305

    Article  CAS  Google Scholar 

  8. Rau GH, Froehlich PN, Takahashi T, Des Marais DJ (1991) Does sedimentary organic δ13C record variations in Quaternary ocean (CO2(aq))? Paleoceanography 6:335–347

    Article  CAS  Google Scholar 

  9. Rau GH, Chavez FP, Friedrich GE (2001) Plankton 13C/12C variations in Monterey Bay, California: evidence of non-diffusive inorganic carbon uptake by phytoplankton in an upwelling environment. Deep-Sea Res I 48:79–94

    Article  CAS  Google Scholar 

  10. Fischer G (1991) Stable carbon isotope ratios of plankton carbon and sinking organic matter from the Atlantic sector of the Southern Ocean. Mar Chem 35:581–596

    Article  CAS  Google Scholar 

  11. Maslin MA, Swann GEA (2006) Isotopes in marine sediments. In: Leng MJ (ed) Isotopes in paleoenvironmental research. Springer, The Netherlands

    Google Scholar 

  12. Pike J, Allen C, Leventer A, Stickley C, Pudsey C (2008) Comparison of contemporary and fossil diatom assemblages from the western Antarctic Peninsula shelf. Mar Micropaleontol 67:274–287

    Article  Google Scholar 

  13. Sigman DM, Altbet MA, Francois R, McCorkle DC, Gaillard J-F (1999) The isotopic composition of diatom-bound nitrogen in Southern Ocean sediments. Paleoceanography 14:118–134

    Article  Google Scholar 

  14. Abramson L, Wirick S, Lee C, Jacobson C, Brandes JA (2009) The use of soft X-ray spectromicroscopy to investigate the distribution and composition of organic matter in a diatom frustule and a biomimetric analogue. Deep-Sea Res II 56:1369–1380

    Article  CAS  Google Scholar 

  15. White DA, Bennike O, Berg S, Harley SL, Fink D, Kiernan K, McConnell A, Wagner B (2009) Geomorphology and glacial history of Rauer Group, East Antarctica. Quat Res 72:80–90

    Article  Google Scholar 

  16. Berg S, Wagner B, Cremer H, Leng MJ, Melles M (2010) Late Quaternary environmental and climate history of Rauer Group, East Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 297:201–213

    Article  Google Scholar 

  17. McMinn A, Gibson J, Hodgson D, Aschman J (1995) Nutrient limitation in Ellis Fjord, eastern Antarctica. Polar Biol 15:269–276

    Article  Google Scholar 

  18. McMinn A, Bleakley N, Steinburner K, Roberts D, Trenerry L (2000) Effect of permanent sea ice cover and different nutrient regimes on the phytoplankton succession of the fjords of the Vestfold Hills Oasis, eastern Antarctica. J Plankton Res 22:287–303

    Article  CAS  Google Scholar 

  19. Stickley CE, Pike J, Leventer A, Dunbar R, Domack EW, Brachfeld S, Manley P, McClennen C (2005) Deglacial ocean and climate seasonality in laminated diatom sediments, Mac. Robertson Shelf, Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 227:290–310

    Article  Google Scholar 

  20. Annett AM, Carson DS, Crosta X, Clarke A, Ganeshram RS (2009) Seasonal progression of diatom assemblage in surface waters of Ryder Bay, Antarctica. Polar Biol 33:13–29

    Article  Google Scholar 

  21. Cartwright I, Buick IS, Harley SL (1997) Timing and mechanisms of carbon isotope exchange in granulite-facies calc-silicate boudins, Rauer Group, East Antarctica. Am Mineral 82:392–404

    CAS  Google Scholar 

  22. Morley DW, Leng MJ, Mackay AW, Sloane HJ, Rioual P, Batterbee RW (2004) Cleaning of lake sediment samples for diatom oxygen isotope analysis. J Paleolimnol 31:391–401

    Article  Google Scholar 

  23. DeMaster DJ (1981) The supply and accumulation of silica in the marine environment. Geochim Cosmochim Acta 45:1715–1732

    Article  CAS  Google Scholar 

  24. Battarbee RW (1973) A new method for estimation of absolute microfossil numbers, with reference especially to diatoms. Limnol Oceanogr 18:647–653

    Article  Google Scholar 

  25. Cremer H, Roberts D, McMinn A, Gore D, Melles M (2003) The Holocene diatom flora of marine bays in the Windmill Islands, East Antarctica. Bot Mar 46:82–106

    Article  Google Scholar 

  26. Stuiver M, Reimer PJ, Reimer RW (2005) CALIB 5.0 (www program and documentation)

  27. Hughen KA, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand C, Blackwell PG, Buck CE, Burr G, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Kromer B, McCormack FG, Manning S, Bronk Ramsey C, Reimer PJ, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) Marine04 marine radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1059–1086

    CAS  Google Scholar 

  28. Stuiver M, Braziunas TF (1993) Modelling atmospheric 14C influences and 14C ages of marine samples to 10 000 BC. Radiocarbon 35:137–189

    CAS  Google Scholar 

  29. Berg S, Wagner B, White D, Melles M (2010) No significant ice sheet expansion beyond present ice margins during the past 4500 yr at Rauer Group, East Antarctica. Quat Res 74:23–25

    Article  CAS  Google Scholar 

  30. Berg S, Wagner B, White DA, Cremer H, Bennike O, Melles M (2009) New marine core record of Late Pleistocene glaciation history, Rauer Group, East Antarctica. Antarct Sci 21:299–300

    Article  Google Scholar 

  31. Sicko-Goad LM, Schelske CL, Stoermer EF (1984) Estimation of intracellular carbon and silica content of diatoms from natural assemblages using morphometric techniques. Limnol Oceanogr 29:1170–1178

    Article  Google Scholar 

  32. Hoagland KD, Rosowski JR, Gretz MR, Roemer SC (1993) Diatom extracellular polymeric substances: function, fine structure, chemistry and physiology. J Phycol 29:537–566

    Article  CAS  Google Scholar 

  33. Crosta X, Shemesh A, Salvignac ME, Gildor H, Yam R (2002) Late Quaternary variations of elemental ratios (C/Si and Si/Si) in diatom-bound organic matter from the Southern Ocean. Deep-Sea Res II 49:1939–1952

    Article  CAS  Google Scholar 

  34. Hayes JM (2001) Fractionation of carbon and hydrogen isotopes in biosynthetic processes. In: Valley JW, Cole DR (eds) Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, VA

    Google Scholar 

  35. Kröger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132

    Article  Google Scholar 

  36. Popp BN, Trull T, Kenig F, Wakeham SG, Rust T, Tilbrook B, Griffiths FB, Wright SW, Marchant HJ, Bidigare RR, Laws E (1999) Controls on the carbon isotopic composition of Southern Ocean phytoplankton. Global Biogeochem Cycles 13:827–843

    Article  CAS  Google Scholar 

  37. Hodgson DA, McMinn A, Kirkup H, Cremer H, Gore D, Melles M, Roberts D, Monitel P (2003) Colonization, succession, and extinction of marine floras during a glacial cycle: a case study from the Windmill Islands (east Antarctica) using biomarkers. Paleoceanography 18. doi:10.1029/2002PA000775

  38. McMinn A, Skerratt J, Trull T, Ashworth C (1999) Nutrient stress gradient in the bottom 5 cm of fast ice, McMurdo Sound, Antarctica. Polar Biol 21:220–227

    Article  Google Scholar 

  39. Munro D, Dunbar R, Mucciarone DA, Arrigo KR, Long MC (2010) Stable isotope composition of dissolved inorganic carbon and particulate organic carbon in sea ice from Ross Sea, Antarctica. J Geophys Res. doi:10.1029/2009JC005661

  40. Leventer A, Domack EW, Ishman SE, Brachfeld S, McClennen CE, Manley P (1996) Productivity cycles of 200–300 years in the Antarctic Peninsula region: understanding linkages among the sun, atmosphere, oceans, sea ice, and biota. GSA Bull 108:1626–1644

    Article  Google Scholar 

  41. Gersonde R, Crosta X, Abelmann A, Armand L (2005) Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum—a circum-Antarctic view based on siliceous microfossil records. Quat Sci Rev 24:869–896

    Article  Google Scholar 

  42. Cremer H, Gore D, Melles M, Roberts D (2003) Palaeoclimatic significance of late Quaternary diatom assemblages from southern Windmill Islands, East Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 195:261–280

    Article  Google Scholar 

  43. McMinn A (2000) Late Holocene increase in sea ice extent in fjords of the Vestfold Hills, eastern Antarctica. Antarct Sci 12:80–88

    Article  Google Scholar 

  44. Jacot Des Combes H, Esper O, De La Rocha CL, Abelmann A, Gersonde R, Yam R, Shemesh A (2008) Diatom δ13C, δ15N and C/N since the Last Glacial Maximum in the Southern Ocean: potential impact on species composition. Paleoceanography. doi:10.1029/2008PA001589

  45. Wagner B, Bennike O, Berg S, Fritz M, Klatt O, Klug M, Muhle K, Ortlepp S, Vogel H, White DA, Melles M (2008) Late Quaternary environmental history of the Rauer Group, as deduced from lake and marine basin sediments. In: Hubberten H (ed) Reports on Polar and Marine Research 583:80–94

  46. Weiss R (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2:203–215

    Article  CAS  Google Scholar 

  47. Zielinski U, Gersonde R (1997) Diatom distribution in the Southern Ocean surface sediments (Atlantic sector): implications for paleoenvironmental reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol 129:213–250

    Article  Google Scholar 

  48. Crosta X, Shemesh A (2002) Reconciling down core anticorrelation of diatom carbon and nitrogen isotopic ratios from the Southern Ocean. Paleoceanography 17(1):1010

    Google Scholar 

  49. McMinn A, Hodgson D (1993) Summer phytoplankton succession in Ellis Fjord, eastern Antarctica. J Plankton Res 15:925–938

    Article  Google Scholar 

  50. Denis D, Crosta X, Barbara L, Massé G, Renssen H, Ther O, Giraudeau J (2010) Sea ice and wind variability duting the Holocene in East Antarctica: insight on middle-high latitude coupling. Quat Sci Rev 29:3709–3719

    Article  Google Scholar 

  51. Hernandez-Sanchez M, Venables HJ, Mills RA, Wolff G, Fisher EH, Holtvoeth J, Leng M, Pancost RD (2010) Productivity variation around the Crozet Plateau: a naturally iron fertilised area of the Southern Ocean. Org Geochem 41:767–778

    Article  CAS  Google Scholar 

  52. Gallagher JB, Burton HR, Calf GE (1989) Meromixis in an Antarctic fjord: a precursor to meromictic lakes on an isostatically rising coastline. Hydrobiologia 172:235–254

    Article  CAS  Google Scholar 

  53. Crosta X, Crespin J, Billy I, Ther O (2005) Major factors controlling Holocene d13Corg changes in seasonal sea-ice environment, Adélie Land, East Antarctica. Glob Biochem Cycles 19:GB4029

    Google Scholar 

  54. Rosenthal Y, Dahan M, Shemesh A (2000) Southern Ocean contributions to glacial-interglacial changes of atmospheric pCO2: an assessment of carbon isotope records in diatoms. Paleoceanography 15:65–75

    Article  Google Scholar 

  55. Schneider-Mor A, Yam R, Bianchi C, Kunz-Pirrung M, Gersonde R, Shemesh A (2005) Diatom stable isotopes, sea ice presence and sea surface temperature records of the past 640 ka in the Atlantic sector of the Southern Ocean. Geophys Res Lett 32:L10704

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Berg.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Berg, S., Leng, M.J., Kendrick, C.P. et al. Bulk Sediment and Diatom Silica Carbon Isotope Composition from Coastal Marine Sediments off East Antarctica. Silicon 5, 19–34 (2013). https://doi.org/10.1007/s12633-012-9113-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-012-9113-3

Keywords

  • Carbon isotopes
  • Diatoms
  • Coastal marine
  • East Antarctica
  • Rauer Group