Skip to main content
Log in

Polymer Nano-Materials Through Self-Assembly of Polymeric POSS Systems

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The self-organization of polyhedral silsesquioxane (POSS) moieties tethered as side groups onto flexible backbones of amorphous siloxanes and poly(1,2-butadiene) was investigated. For comparison, linear oligosiloxanes substituted with POSS units at the chain end (α- or α,ω-functionalization) were examined. The properties of POSS-functionalized materials were studied (SAXS, WAXD, DSC, TGA, and optical microscopy). The formation of organized POSS assemblies was monitored as a function of the structure of the polymer chain, as well as the POSS concentration in the polymer matrix. It was confirmed that the rubbery polymers allow the pendant POSS units to assemble without the competition of the main chain crystallization. Materials with a larger number of POSS groups tend to form lamellar structures. It was found that the process of disintegration of POSS assemblies in siloxanes is thermally driven. The temperature of melting depends on the structure of a POSS assembly, and the time needed for the organized structure recovery from the melt depends on the type of arrangement of POSS-moieties that is to be formed. At a low POSS content besides the POSS assemblies, which are crystallites of nanometric size, larger polycrystalline objects of micrometric sizes are formed. They consist of a greater number of POSS crystallites embedded in the siloxane polymer. Their shapes and sizes are dependent on the polymer structure and the history of the polymer sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whitesides GM, Mathias JP, Seto CT (1991) Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254:1312–1319

    Article  CAS  Google Scholar 

  2. Ikkala O, Brinke G (2002) Functional materials based on self-assembly of polymeric supramolecules. Science 295:2407–2409

    Article  CAS  Google Scholar 

  3. Phillips SH, Haddad TS, Tomczak SJ (2004) Developments in nanoscience: polyhedral oligomeric silsesquioxane (POSS)-polymers. Curr Opin Solid State Mater Sci 8:21–29

    Article  CAS  Google Scholar 

  4. Zheng L, Hong S, Cardoen G, Burgaz E, Gido SP, Coughlin EB (2004) Polymer nanocomposites through controlled self-assembly of cubic silsesquioxane scaffolds. Macromolecules 37:8606–8611

    Article  CAS  Google Scholar 

  5. Huang KW, Tsai LW, Kuo SW (2009) Influence of octakis-functionalized polyhedral oligomeric silsesquioxanes on the physical properties of their polymer nanocomposites. Polymer 50:4876–4887

    Article  CAS  Google Scholar 

  6. Wu J, Mather PT (2009) POSS polymers: physical properties and biomaterials applications. J Macromol Sci, Part C: Polymer Rev 49:25–63

    CAS  Google Scholar 

  7. Kim BS, Mather PT (2006) Morphology, microstructure, and rheology of amphiphilic telechelics incorporating polyhedral oligosilsesquioxane. Macromolecules 39:9253–9260

    Article  CAS  Google Scholar 

  8. Zhao Y, Schiraldi DA (2005) Thermal and mechanical properties of polyhedral oligomeric silsesquioxane (POSS)/polycarbonate composites. Polymer 46:11640–11647

    Article  CAS  Google Scholar 

  9. Kopesky ET, Haddad TS, Cohen RE, McKinley GH (2004) Thermomechanical properties of poly(methyl methacrylate)s containing tethered and untethered polyhedral oligomeric silsesquioxanes. Macromolecules 37:8992–9004

    Article  CAS  Google Scholar 

  10. Sheen YC, Lu CH, Huang CF, Kuo SW, Chang FC (2008) Synthesis and characterization of amorphous octakis-functionalized polyhedral oligomeric silsesquioxanes for polymer nanocomposites. Polymer 49:4017–4024

    Article  CAS  Google Scholar 

  11. Ryu HS, Kim DG, Lee JC (2010) Polysiloxanes containing polyhedral oligomeric silsesquioxane groups in the side chains; synthesis and properties. Polymer 51:2296–2304

    Article  CAS  Google Scholar 

  12. Seino M, Hayakawa T, Ishida Y, Kakimoto M (2006) Synthesis and characterization of crystalline hyperbranched polysiloxysilane with POSS groups at the terminal position. Macromolecules 39:8892–8894

    Article  CAS  Google Scholar 

  13. Freire JJ, Piérola IF, Horta A (1996) Conformational analysis of methyl-phenyl-siloxane chains. Macromolecules 29:5143–5148

    Article  CAS  Google Scholar 

  14. Villegas JA, Olayo R, Cervantes J (2003) Effect of side groups on the conformation of a series of polysiloxanes in solution. J Inorg Organomet Polym 13:205–222

    Article  CAS  Google Scholar 

  15. Kowalewska A, Delczyk B, Chruściel J (2009) “Chain mobility in bulky carbosilane modified polymeric siloxane systems” e-Polymers:013

  16. Kowalewska A, Kaźmierski S, Delczyk-Olejniczak B (2011) Polymer chain relaxation mechanisms in siloxane-carbosilane systems. SILICON 3:37–44

    Article  CAS  Google Scholar 

  17. Okada T, Ikeda M (2004) JP Pat. 2004196958 Chem Abstr 141:107156

  18. Bharadwaj RK, Berry RJ, Farmer BL (2000) Molecular dynamics simulation study of norbornene–POSS polymers. Polymer 41:7209–7221

    Article  CAS  Google Scholar 

  19. Roland CM, Casalini R, Santangelo P, Sekula M, Ziolo J, Paluch M (2003) Chemical structure and local segmental dynamics in 1,2-polybutadiene. Macromolecules 36:4954–4959

    Article  CAS  Google Scholar 

  20. Lund R, Alegría A, Goitandía L, Colmenero J, González MA, Lindner P (2008) Dynamical and structural aspects of the cold crystallization of poly(dimethylsiloxane) (PDMS). Macromolecules 41:1364–1376

    Article  CAS  Google Scholar 

  21. Waddon AJ, Coughlin EB (2003) Crystal structure of polyhedral oligomeric silsequioxane (POSS) nano-materials: a study by X-Ray Diffraction and electron microscopy. Chem Mater 15:4555–4561

    Article  CAS  Google Scholar 

  22. Liu L, Tian M, Zhang W, Zhang L, Mark JE (2007) Crystallization and morphology study of polyhedral oligomeric silsesquioxane (POSS)/polysiloxane elastomer composites prepared by melt blending. Polymer 48:3201–3212

    Article  CAS  Google Scholar 

  23. Bassindale AR, Liu Z, MacKinnon IA, Taylor PG, Yang Y, Light ME, Horton PN, Hursthouse MB (2003) “A higher yielding route for T8 silsesquioxane cages and X-Ray crystal structures of some novel spherosilicates” Dalton Trans 2945–2949

  24. Zheng L, Wadon AJ, Farris RJ, Coughlin EB (2002) X-Ray characterizations of polyethylene polyhedral oligomeric silsesquioxane copolymers. Macromolecules 35:2375–2379

    Article  CAS  Google Scholar 

  25. Romo-Uribe A, Mather PT, Haddad TS, Lichtenhan JD (1998) Viscoelastic and morphological behavior of hybrid styryl-based polyhedral oligomeric silsesquioxane (POSS) copolymers. J Polymer Sci B Polymer Phys 36:1857–1872

    Article  CAS  Google Scholar 

  26. Goffin AL, Duquesne E, Raquez JM, Miltner HE, Ke X, Alexandre M, Van Tendeloo G, Van Mele B, Dubois P (2010) From polyester grafting onto POSS nanocage by ring-opening polymerization to high performance polyester/POSS nanocomposites. J Mater Chem 20:9415–9422

    Article  CAS  Google Scholar 

  27. Raftopoulos KN, Pandis C, Apekis L, Pissis P, Janowski B, Pielichowski K, Jaczewska J (2010) Polyurethane-POSS hybrids: molecular dynamic studies. Polymer 51:709–718

    Article  CAS  Google Scholar 

  28. Wang JL, Ye ZB, Joly H (2007) Synthesis and characterization of hyperbranched polyethylenes tethered with polyhedral oligomeric silsesquioxane (POSS) nanoparticles by chain walking ethylene copolymerization with acryloisobutyl-POSS. Macromolecules 40:6150–6163

    Article  CAS  Google Scholar 

  29. Lee KM, Knight PT, Chung T, Mather PT (2008) Polycaprolactone-POSS chemical/physical double networks. Macromolecules 41:4730–4738

    Article  CAS  Google Scholar 

  30. Strobl GR, Schneider M (1980) Direct evaluation of the electron density correlation function of partially crystalline polymers. J Polym Sci Polym Phys 18:1343–1359

    CAS  Google Scholar 

  31. Goderis B, Reynaers H, Koch MHJ, Mathot VBF (1999) Use of SAXS and linear correlation functions for the determination of the crystallinity and morphology of semi-crystalline polymers. Application to linear polyethylene. J Polymer Sci B Polymer Phys 37:1715–1738

    Article  CAS  Google Scholar 

  32. Kazmierski K, Hurduc N, Sauvet G, Chojnowski J (2004) Polysiloxanes with chlorobenzyl groups as precursors of new organic-silicone materials. J Polym Sci Part A: Polym Chem 42:1682–1692

    Article  CAS  Google Scholar 

  33. Cypryk M, Delczyk-Olejniczak B (2010) Copolymerization of functional cyclotrisiloxanes - a reactivity comparison. Polimery 55:503–511

    CAS  Google Scholar 

  34. Perrin D, Armarego WLF (1980) In: “Purification of laboratory chemicals” Pergamon Press, Oxford, England

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Kowalewska.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 512 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kowalewska, A., Fortuniak, W., Chojnowski, J. et al. Polymer Nano-Materials Through Self-Assembly of Polymeric POSS Systems. Silicon 4, 95–107 (2012). https://doi.org/10.1007/s12633-011-9107-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-011-9107-6

Keywords

Navigation