Skip to main content
Log in

Evaluation of the Suitability of Agriglasses Containing ZnO for Plant Fertilization

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Six different samples from borosilicate and phosphate glassy systems have been synthesized. Glass batches were prepared from chemically pure materials and melted in platinum or porcelain crucibles and at temperatures in the range 1,000–1,450 °C for 2-3 h until homogeneity was reached. The prepared specimens were annealed at the appropriate temperatures of 380 or 520 °C for the phosphate and borosilicate glasses, respectively. Samples of 2 mm dimensions were tested for dissolution behavior in 2% citric acid solution for 1, 2, 3, and 4 weeks and the released phosphorous and potassium ions (macroelements) and zinc ions (microelement) were measured. Also, Infrared (IR) absorption spectra of the samples were measured before and after immersion in the leaching solution. The experimental results indicate that the release of the macroelements and microelements depends primarily on the composition of the agriglass and the percent of constituent ions and the released ions vary slightly from 1 week to 4 weeks. The IR spectra show characteristic IR absorption bands due to vibrations of collective silicate, phosphate, and borate groups, depending on the agriglass composition and the chains or units seem to be interconnected with each other within the glass network. The interpretation of the dissolution behavior is based on a suggested mechanism for the release of the easily soluble components from the glass specimens. The IR absorption spectra support and confirm the proposed behaviour for the corrosion mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waclawsca I, Szumera M (2009) J Alloys Compd 468:246–253

    Article  Google Scholar 

  2. Azooz MA, Abou Aiad THM, ElBatal FH, ElTabii G (2008) Indian J Pure Appl Phys 46:880–888

    CAS  Google Scholar 

  3. Monem AS, ElBatal HA, Khalil EMA, Azooz MA, Hamdy YM (2008) J Mater Sci Mater Med 19(3):1097–1108

    Article  CAS  Google Scholar 

  4. Samuneva B, Bozadjor P, Djambaski P, Rangelova N (2000) Glass Technol 41:206–208

    CAS  Google Scholar 

  5. Samuneva B, Rangelova N, Bozadjor P, Djambaski P (2002) Glastech Ber Glass Sci Technol 75C2:233–238

    Google Scholar 

  6. Azooz MA, ElBatal HA, ElBadry KHM, ElAshry SM, Abd ElMoneim M (2006) Glass Technol: Eur J Glass Sci Technol A 47(6):164–166

    CAS  Google Scholar 

  7. ElBadry KM, Moustafa FA, Azooz MA, ElBatal FH (2000) Indian J Pure Appl Phys 38:741–761

    CAS  Google Scholar 

  8. ElBatal FH, ElKheshen AA (2008) Mater Chem Phys 116:352–362

    Article  Google Scholar 

  9. Cottenie A, Verloo M, Kiekens L, Velghe G, Camerlynck R (1982) Laboratory of Analytical and Agrochemistry State University Ghent, Belgium

  10. Jackson MI (1973) Soil chemical analysis. Prentice Hall of India private limited, New Delhi

    Google Scholar 

  11. Abo Naf SM, ElBatal FH, Azooz MA (2002) Mater Chem Phys 77:846–852

    Article  Google Scholar 

  12. Tarte P (1962) Spectrochim Acta 18:467–473

    Article  CAS  Google Scholar 

  13. Condrate R (1972) Introduction to glass science. Plenum, New York, p 101

    Google Scholar 

  14. Barba MF, Callejas P, Arzabe JO, Ajo D (1998) Journal of European Society 18:1313

    CAS  Google Scholar 

  15. Szumera M, Waclawska I, Mozgawa W, Sitarz M (2005) J Mol Struct 744:609

    Article  Google Scholar 

  16. Plotnichenko VG, Sokolov VO, Koltasher VV, Dianov EM (2002) J Non-Cryst Solids 306:209

    Article  CAS  Google Scholar 

  17. Hoppe U (1996) A structural model for phosphate glasses. J Non-Cryst Solids 195:138

    Article  CAS  Google Scholar 

  18. Walter G, Hoppe U, Baade T, Kranold R, Stachel D (1997) J Non-Cryst Solids 217:299

    Article  CAS  Google Scholar 

  19. Szumera M, Waclawska I (2007) J Therm Anal Calorim 88:151

    Article  CAS  Google Scholar 

  20. Dickinson JE (1994) Chim Chron New Ser 32:355

    Google Scholar 

  21. Reis ST, Mogus-Milankovic A, Licina V, Yang JB, Karabulut M, Day DA, Brow RK (2007) J Non-Cryst Solids 353:151–158

    Google Scholar 

  22. Reis ST, Faria DLA, Martinelli JR, Pontuschka WM, Day DA, Partini CSM (2002) J Non-Cryst Solids 304:189

    Article  Google Scholar 

  23. Sales BC, Boatner LA (1984) Mater Lett 2:301

    Article  CAS  Google Scholar 

  24. Yu X, Day DA, Long GJ, Brow RK (1997) J Non-Cryst Solids 215:21

    Article  CAS  Google Scholar 

  25. Musinu A, Piccaluga G (1995) J Non-Cryst Solids 192&193:32

    Article  CAS  Google Scholar 

  26. Ray NH, Laycock JNC, Robinson WD (1973) Glass Technol 14(2):55

    CAS  Google Scholar 

  27. Quinn J, Beall GH, Dickinson JE (1992) In: Pro. Int. Congr. On Glass, Vol. 4. Bol Soc Esp Ceram Vidr 31-C, 79

  28. Newton RG (1985) Glass Technol 26:21–38

    CAS  Google Scholar 

  29. Bunker C, Arnold GW, Day DE, Bray PJ (1986) J Non-Cryst Solids 87:226–253

    Article  CAS  Google Scholar 

  30. Doremus RH (1994) Glass science, 2nd edn. Wiley, New York

    Google Scholar 

  31. Paul A (1990) Chemistry of glasses, 2nd edn. Chapman and Hall, New York

    Google Scholar 

  32. Greaves GN (1985) J Non-Cryst Solids 71:203

    Article  CAS  Google Scholar 

  33. Bacon FR, Raggon FC (1959) J Am Ceram Soc 42:199–205

    Article  CAS  Google Scholar 

  34. Ernsberger FM (1958) Presented at 60th annual meeting. The American Ceramic Society, Pittsburgh, PA, April

  35. Hurt JC, Philips CJ (1971) J Am Ceram Soc 53:269–293

    Article  Google Scholar 

  36. Furukawa T, White WB (1980) J Non-Cryst Solids 38–39:87–92

    Article  Google Scholar 

  37. Minser G, Walden B, White WB (1984) J Am Ceram Soc 67:47–49

    Google Scholar 

  38. Rosenthal B, Garofalini SH (1989) J Am Ceram Soc 70:821–826

    Article  Google Scholar 

  39. Khedr AA, ElBatal HA (1996) J Am Ceram Soc 79:733–741

    Article  CAS  Google Scholar 

  40. Bergman W (1992) “Nutritional disorders of plants” development. Visual and analytical diagnosis. Gustav Fisher Verlag Jena, Stuttgart, Germany

    Google Scholar 

  41. Koudelka L, Mosner P, Zeyer-Dusterer M, Jager C (2007) J Phys Chem Solids 68:638–644

    Article  CAS  Google Scholar 

  42. Jose Brandao-Neto MD, Vivian Stefan MD, Berenice B, Mendonca MD, Bloise W, Ana Valeria Castro B (1995) Nutr Res 15(3):335–358

    Article  Google Scholar 

  43. Vallee BL, Auld DS (1992) Matrix Suppl 1:5–19

    CAS  Google Scholar 

  44. Vallee BL, Auld DS (1992) Faraday Discuss 47–65

  45. Zeng J, Vallee BL, Kagi JH (1991) Proc Natl Acad Sci USA 88:9984–9988

    Article  CAS  Google Scholar 

  46. Lazo JS, Pitt BR (1995) Annu Rev Pharmacol Toxicol 35:635–653

    Article  CAS  Google Scholar 

  47. Ebadi M, Leuschen MP, el Refaey H, Hamada FM, Rojas P (1996) Neurochem Int 29:159–166

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona A. Ouis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouis, M.A., Ghoneim, N.A., ElBatal, H.A. et al. Evaluation of the Suitability of Agriglasses Containing ZnO for Plant Fertilization. Silicon 4, 61–71 (2012). https://doi.org/10.1007/s12633-010-9060-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-010-9060-9

Keywords

Navigation