Bioactivity Characterization of Amorphous Silica Ceramics Derived from Rice Husk Ash

Abstract

Rice husk ash has been used to prepare amorphous silica bioactive ceramics. Three varieties of silica powders, namely brown ash, white ash and silica gel containing 96.0, 99.8 and 99.9% silica respectively, were used to prepare silica ceramics. The bioactivity and biodegradability properties of these ceramics were evaluated. The formation of crystalline apatite was observed on all the specimens in simulated body fluid. The phase composition, morphology and calcium/phosphorous ratio of the apatite layer formed were evaluated by X-ray Diffraction, Scanning Electron Microscopy and Energy Dispersive Spectroscopy. Controlled biodegradability of amorphous silica in Tris buffer solution was found. These results suggest that the amorphous silica derived from rice husk ash is a promising and cost effective biomaterial.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Hench LL (1996) In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) An introduction to materials in medicine. Academic Press, USA

    Google Scholar 

  2. 2.

    Ryu HS, Seo JH, Kim H, Hong KS, Park HJ, Kim DJ, Lee JH, Lee DH, Chang BS, Lee CK (2002) Key Eng Mater 15:261–265

    Google Scholar 

  3. 3.

    Lafon JP, Champion E, Bernache-Assolant D (2002) Key Eng Mater 15:477–481

    Google Scholar 

  4. 4.

    Ogose A, Kondo N, Umezu H, Hotta T, Kawashima H, Tokunaga K (2006) Biomaterials 27:1542

    Article  CAS  Google Scholar 

  5. 5.

    Liu X, Ding C, Wang Z (2001) Biomaterials 22:2007–2012

    Article  CAS  Google Scholar 

  6. 6.

    Nagata F, Miyajima T, Yokogawa Y (2003) Key Eng Mater 240:167–170

    Article  Google Scholar 

  7. 7.

    Kokubo T (2005) Mater Sci Eng C 25:97–104

    Article  Google Scholar 

  8. 8.

    Kortesuo P, Ahola M, Karlson S, Kangasniemi I, Yli-Urpo A, Kiesvaara J (2000) Biomaterials 21:193–208

    Article  CAS  Google Scholar 

  9. 9.

    Barbe C, Bartlett J, Kong LG, Finnie K, Lin HQ, Larkin M (2004) Adv Mater 16:1959–1966

    Article  CAS  Google Scholar 

  10. 10.

    Kobayashi M, Nakamura T, Okada Y, Fukumomo A, Furukawa T, Kato H (1998) J Biomed Mater Res 42:223–237

    Article  CAS  Google Scholar 

  11. 11.

    Oonishi H, Hench LL, Wilson J, Sugihara F, Tsuji E, Matsuura M (2000) J Biomed Mater Res 51:37–46

    Article  CAS  Google Scholar 

  12. 12.

    Ferrer ML, Garcia-Carvajal ZY, Yuste L, Rojo F, del Monte F (2006) Chem Mater 18:1458–1463

    Article  CAS  Google Scholar 

  13. 13.

    Hamad MA, Khattab IA (1981) Thermochim Acta 48:343–347

    Article  CAS  Google Scholar 

  14. 14.

    Nayak JP, Bera J (2009) Phase Transit 82:879–888

    Article  CAS  Google Scholar 

  15. 15.

    Asuncion MZ, Hasegawa I, Kampfa JW, Laine RM (2005) J Mater Chem 15:2114–2121

    Article  CAS  Google Scholar 

  16. 16.

    Bansal V, Ahmad A, Sastry M (2006) J Am Chem Soc 128:14059–14066

    Article  CAS  Google Scholar 

  17. 17.

    Krishnarao RV, Godkhindi MM, Chakraborty M, Mukunda PG (1991) J Am Ceram Soc 74:2869–2872

    Article  CAS  Google Scholar 

  18. 18.

    Sarangi M (2009) Silicon 1:103–109

    Article  CAS  Google Scholar 

  19. 19.

    Cüneyt Tas A (2000) Biomaterials 21:1429–1438

    Article  Google Scholar 

  20. 20.

    Nieto A, Areva S, Wilson T, Viitala R, Vallet-Regi M (2009) Acta Biomater 5(9):3478–3487

    Article  CAS  Google Scholar 

  21. 21.

    Koch OG, Koch-Dedic GA (1974) Siliconmolybdanblau-Verfahren. In: Handbuch der Spurenanalyse. Berlin: Springer-Verlag: 1105

  22. 22.

    Balamurugan A, Balossier G, Kannan S, Michel J, Rebelo AHS, Ferreira JMF (2007) Acta Biomaterialia 3:255–262

    Article  CAS  Google Scholar 

  23. 23.

    Sacks MD, Scheiffele GW (1985) Ceram Eng Sci Proc 6:1109–1123

    Article  CAS  Google Scholar 

  24. 24.

    Lluch AV, Ferrer G, Pradas M (2009) Polymer 50:2874–2884

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Bera.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nayak, J.P., Bera, J. Bioactivity Characterization of Amorphous Silica Ceramics Derived from Rice Husk Ash. Silicon 4, 57–60 (2012). https://doi.org/10.1007/s12633-010-9058-3

Download citation

Keywords

  • Rice husk ash
  • Amorphous silica
  • Bioactivity
  • Apatite
  • Biodegradability