Skip to main content
Log in

Organosilicon Biotechnology

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Inspired by Nature, biocatalysis and biotechnology have quickly become burgeoning fields in silicon chemistry. From cell cultures to isolated enzymes researchers are exploring the use of biological systems to affect chemical transformations at or near silicon atoms. This review will examine the history of biotechnology as it pertains to organosilicon compounds (i.e., compounds with one or more Si-C bonds) and provide some insights into future directions for the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morse DE (1999) Trends in Biotechnol 17:230–232

    CAS  Google Scholar 

  2. Robinson R, Kipping FS (1912) Trans Chem Soc 101:2156–2166

    Google Scholar 

  3. Kipping FS (1912) Trans Chem Soc 101:2108–2125

    CAS  Google Scholar 

  4. Kipping FS (1912) Trans Chem Soc 101:2125–2142

    Google Scholar 

  5. Robinson R, Kipping FS (1912) Trans Chem Soc 101:2142–2155

    Google Scholar 

  6. Robinson R, Kipping FS (1912) Trans Chem Soc 101:2156–2166

    Google Scholar 

  7. Robinson R, Kipping FS (1914) Trans Chem Soc 105:40–49

    Google Scholar 

  8. Kipping FS, Robinson R (1914) Trans Chem Soc 105:484–500

    CAS  Google Scholar 

  9. Meads JA, Kipping FS (1914) Trans Chem Soc 105:679–690

    CAS  Google Scholar 

  10. Pink HS, Kipping FS (1923) Trans Chem Soc 123:2830–2837

    CAS  Google Scholar 

  11. Kipping FS (1937) Proc Roy Soc Lond Ser A 159:139–148

    CAS  Google Scholar 

  12. Brook AG, Abdesaken F, Gutekunst B, GutekunstG, Kallury RK (1981) J Chem Soc Chem Commun 191–192

  13. West R, Fink MJ, Michl J (1981) Science 214:1343–1344

    CAS  Google Scholar 

  14. Sekiguchi A, Kinjo R, Ichinohe M (2004) Science 305:1755–1757

    CAS  Google Scholar 

  15. Wiberg N, Vasisht SK, Fisher G, Mayer PZ (2004) Anorg Allg Chem 630:1823–1828

    CAS  Google Scholar 

  16. Iler RK (1979) The chemistry of silica, solubility, polymerization, colloid and surface properties, and biochemistry. Wiley, Hoboken

    Google Scholar 

  17. Lowenstam HA (1986) In: Leadbeater BSC (ed) Biomineralization in lower plants and animals, vol 30. Oxford University Press, New York

    Google Scholar 

  18. Cha JN, Shimizu K, Zhou Y, Christensen SC, Chmelka BF, Stucky GD, Morse DE (1999) Proc Natl Acad of Sci USA 96:361–365

    CAS  Google Scholar 

  19. Zhou Y, Shimizu K, Cha JN, Stucky GD, Morse DE (1999) Angew Chem Int Ed 38:779–782

    Google Scholar 

  20. Kröger R, Deutzmann R, Sumper M (2001) J Biol Chem 276:26066–26070

    Google Scholar 

  21. Wenz S, Hett R, Richthammer P, Sumper M (2008) Angew Chem Int Ed 47:1729–1732

    Google Scholar 

  22. Perry CC, Williams RJP, Fry SC (1987) J Plant Physiol 126:437–448

    CAS  Google Scholar 

  23. Perry CC, Keeling-Tucker T (1998) Chem Commun 2587–2588

  24. Perry CC, Keeling-Tucker T (2003) Colloid Polym Sci 281:652–664

    CAS  Google Scholar 

  25. Sapei L, Noske R, Strauch P, Paris O (2008) Chem Mater 20:2020–2025

    CAS  Google Scholar 

  26. Brook MA (2000) Silicon in organic, organometallic, and polymer chemistry. Wiley, New York

    Google Scholar 

  27. Tacke R, Wannagat U (1979) In: (ed) Topics in current chemistry Vol 84: Bio-active organosilicon compounds, Springer-Verlag, Berlin, Germany

  28. Tacke R (1999) Angew Chem Int Ed 38:3015–3018

    CAS  Google Scholar 

  29. Brutchey RL, Morse DE (2008) Chem Rev 108:4915–4934

    CAS  Google Scholar 

  30. Müller WEG, Li J, Schroeder HC, Qiao L, Wang X (2007) Biogeosciences 4:219–323

    Article  Google Scholar 

  31. Grachev MA, Annenkov VV, Likhoshway YV (2008) Bioessays 30:328–337

    CAS  Google Scholar 

  32. Schröder HC, Brandt D, Schloβmacher U, Wang X, Tahir MN, Tremel W, Belikov SI, Müller WEG (2007) Naturwissenschaften 94:339–359

    Google Scholar 

  33. Schröder HC, Wang X, Tremel W, Ushijima H, Müller WEG (2008) Nat Prod Rep 25:455–474

    Google Scholar 

  34. Tacke R, Linoh H, Stumpf B, Abraham W, Kieslich K, Ernst L (1983) Zeit für Natur 38:616–620

    Google Scholar 

  35. Sydlatk S, Andree H, Stoffregen A, Wagner F, Stumpf B, Ernst L, Zilch H, Tacke R (1987) Appl Microbiol Biotechnol 27:152–158

    Google Scholar 

  36. Brook AG (1958) J Am Chem Soc 80:1886–1889

    CAS  Google Scholar 

  37. Tacke R, Kosub U, Wagner SA, Bertermann R, Schwarz S, Merget S, Gunther K (1998) Organometallics 17:1687–1699

    CAS  Google Scholar 

  38. Tacke R, Wagner SA, Sperlich J (1994) Chem Ber 127:639–642

    CAS  Google Scholar 

  39. Wagner SA, Brakmann S, Tacke R (1996) In: Organosilicon chemistry II-from molecules to materials, pp 237–242

  40. Therisod M (1989) J Organomet Chem 361:C8–C10

    CAS  Google Scholar 

  41. Csuk R, Glanzer BI (1991) Chem Rev 91:49–97

    CAS  Google Scholar 

  42. Zhou B, Goaolan AS, VanMiddlesworth V, Shieh W, Sih CJ (1983) J Am Chem Soc 105:5925–5926

    CAS  Google Scholar 

  43. Sydltak C, Stoffregen A, Wuttke F, Tacke R (1988) Biotechnol Lett 10:731–736

    Google Scholar 

  44. Fisher L, Wagner SA, Tacke R (1995) Appl Microbiol Biotechnol 42:671–674

    Google Scholar 

  45. Zani P (2001) J Mol Catal B: Enz 11:279–285

    CAS  Google Scholar 

  46. Tacke R, Hengelsberg H, Zilch H, Stumpf B (1989) J Organomet Chem 379:211–216

    CAS  Google Scholar 

  47. Tacke R (1958) In: Sakuri H (ed) Organosilicon and bioorganosilicon chemistry: structure, bonding, reactivity and synthetic application. Ellis Horwood Limited, Chichester

    Google Scholar 

  48. Tacke R, Brakmann S, Wuttke F, Fooladi J, Sydlatk C, Schomburg D (1991) J Organomet Chem 403:29–41

    CAS  Google Scholar 

  49. Tacke R, Wuttke F, Henke H (1992) J Organomet Chem 424:273–280

    CAS  Google Scholar 

  50. Huber P, Bratovanov S, Beinz S, Syldatk C, Pietzsch M (1996) Tetrahedron: Assym 7:69–78

    CAS  Google Scholar 

  51. Bienz S, Chapeaurouge A (1991) Helv Chim Acta 74:1477

    CAS  Google Scholar 

  52. Chapeaurouge A, Bienz S (1993) Helv Chim Acta 76:1876

    CAS  Google Scholar 

  53. Gibson DT, Koch JR, Kallio RE (1968) Biochemistry 7:2653–2662

    CAS  Google Scholar 

  54. Smith WC, Whited GM, Lane TH, Sanford K, McAuliffe JC (2008) Enzymatic Dihydroxylation of Aryl Silanes. In: Cheng, NH, Gross RA (eds) Polymer Biocatalysis and Biomaterials II: 434–459

  55. Fattakhova AN, Ofitserov EN, Diyakov VM, Naumova RP (1987) FEMS Microbiol Lett 4:317–319

    Google Scholar 

  56. Fattakhova AN, Chirko EP, Ofitserov EN (1992) Biol Nauki 4:100–105

    Google Scholar 

  57. Tacke R, Wagner SA, Brakmann S, Wuttke F, Eilert U, Fisher L, Syldatk C (1993) J Organomet Chem 458:13–17

    CAS  Google Scholar 

  58. Ryabov AD (1991) Angew Chem Int Ed Engl 30:931–941

    Google Scholar 

  59. Fritsche K, Sydlatk C, Wagner F, Hengelsberg H, Tacke R (1989) Appl Microbiol Biotechnol 31:107–111

    CAS  Google Scholar 

  60. Tanaka A, Kawamoto T, Sonomoto K (1990) Ann NY Acad Sci 613:702–706

    CAS  Google Scholar 

  61. Eaborn C (1960) Organosilicon compounds. Butterworths Scientific, London

    Google Scholar 

  62. Zong M, Fukui T, Kawamoto T, Tanaka A (1991) Appl Microbiol Biotechnol 36:40–43

    CAS  Google Scholar 

  63. Eklund H (1983) Pharm Biochem and Behaviour 18(Supplement 1):73–81

    CAS  Google Scholar 

  64. Wang YF, Lalonde JJ, Momongan M, Bergbeiter DE, Wong CH (1988) J Am Chem Soc 110:7200–7205

    CAS  Google Scholar 

  65. De Jeso B, Belair N, Deleuze H, Rascale M, Maillard B (1990) Tetrahedron Lett 31:653–654

    Google Scholar 

  66. Santaniello E, Ferraboschi P, Grisenti P (1990) Tetrahedron Lett 31:5657–5660

    CAS  Google Scholar 

  67. Djerourou A, Blanco L (1991) Tetrahedron Lett 32:6325–6336

    CAS  Google Scholar 

  68. McDonough MA, Klei HE, Kelly JA (1999) Protein Sci 8:1971–1981

    CAS  Google Scholar 

  69. Hengelsberg H, Tacke R, Fritsche K, Syldatk C, Wagner F (1991) J Organomet Chem 415:39–45

    CAS  Google Scholar 

  70. Yamanaka H, Fukui T, Kawamoto T, Tanaka A (1996) Appl Microbiol Biotechnol 45:51–55

    CAS  Google Scholar 

  71. Tsuji Y, Yamanaka H, Fukui T, Kawamoto T, Tanaka A (1997) Appl Microbiol Biotechnol 47:114–119

    CAS  Google Scholar 

  72. Yamanaka H, Kawamoto T, Tanaka A (1997) J Ferment Bioeng 84:181–184

    CAS  Google Scholar 

  73. Pietzsch M, Waniek T, Smith RJ, Bratovanov S, Bienz A, Syldatk C (2000) Monatshefte für Chemie 131:645–653

    CAS  Google Scholar 

  74. Smith RJ, Pietzsch M, Waniek T, Syldatk C, Bienz S (2001) Tetrahedron: Asymm 12:157–165

    CAS  Google Scholar 

  75. May O, Siemann M, Pietzsch M, Kiess M, Mattes R, Syldatk C (1988) J Biotechnol 61:1–131

    Google Scholar 

  76. Ishikawa H, Yamanaka H, Kawamoto T, Tanaka A (1999) Appl Microbiol Biotechnol 51:470–473

    CAS  Google Scholar 

  77. Ishikawa H, Yamanaka H, Kawamoto T, Tanaka A (1999) Appl Microbiol Biotechnol 53:19–22

    CAS  Google Scholar 

  78. Fukui T, Zong M, Kawamoto T, Tanaka A (1992) Appl Microbiol Biotechnol 38:208–213

    Google Scholar 

  79. Uejima A, Fukui T, Fukusaki E, Omata T, Kawamoto T, Sonomoto K, Tanaka A (1993) Appl Microbiol Biotechnol 38:482–486

    CAS  Google Scholar 

  80. Tsuji Y, Fukui T, Kawamoto T, Tanaka A (1994) Appl Microbiol Biotechnol 41:219–224

    CAS  Google Scholar 

  81. Horton HR, Moran LA, Scrimgeour KG, Perry MD, Rawn JD (1993) Principles of biochemistry, 4th edn. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  82. Sonomoto K, Oiki H, Kato Y (1992) Enz Microbiol Technol 14:640–643

    CAS  Google Scholar 

  83. Li N, Zong M, Liu C, Peng H, Wu H (2003) Biotechnol Lett 25:219–222

    CAS  Google Scholar 

  84. Li N, Zong M, Peng H, Wu H, Liu C (2003) J Mol Catal B: Enz 22:7–12

    Google Scholar 

  85. Huang S, Liu S, Zong M, Xu R (2005) Biotechnol Lett 27:79–82

    CAS  Google Scholar 

  86. Bassindale AR, Brandstadt KF, Lane TH, Taylor PG (2003) J Inorg Biochem 96:401–406

    CAS  Google Scholar 

  87. Bassindale AR, Brandstadt KF, Lane TH, Taylor PG (2003) Polymer Preprints 44:570–571

    CAS  Google Scholar 

  88. Bassindale AR, Brandstadt KF, Lane TH, Taylor PG (2004) Polymer Preprints 45:614–615

    CAS  Google Scholar 

  89. Maraite A, Ansorge-Schumacher MB, Ganchegui B, Leitner W, Grogan G (2009) J Mol Catal B Enz 56:24–28

    CAS  Google Scholar 

  90. Zelisko PM, Arnelian K, Dudding T, Simionescu R, Stanisic H (2007) Polymer Preprints 48:984–985

    CAS  Google Scholar 

  91. Zelisko PM, Arnelian K, Dudding T, Simionescu R, Stanisic H (2010) ACS symposium series (in press)

  92. Tacke R, Heinrich T (2002) Silicon Chem 1:35–39

    CAS  Google Scholar 

  93. Brinker CJ, Scherer GW (1990) Sol-gel science, the chemistry and physics of sol-gel processing. Academic, San Diego

    Google Scholar 

  94. Dong H, Brennan JD (2006) Chem Mater 18:541–546

    Google Scholar 

  95. Zheng L, Reidy WR, Brennan JD (1997) Anal Chem 69:3940–3949

    CAS  Google Scholar 

  96. Frampton M, Vawda A, Fletcher J, Zelisko PM (2008) Chem Commun 5544–5546

  97. Frampton M, Simionescu R, Zelisko PM (2009) Silicon 1:47–5

    CAS  Google Scholar 

  98. Buisson P, E El Rassy, Maury S, Pierre AC (2003) J Sol-Gel Sci Techn 27:373–379

    CAS  Google Scholar 

  99. Coradin T, Coupe A, Livage J (2003) Colloids Surf B 29:189–196

    CAS  Google Scholar 

  100. Müller WE, Belikov SI, Tremel W, Perry CC, Gieskes WW, Boreiko A, Schröder HC (2006) Micron 37(2):107–120

    Google Scholar 

  101. Schröder HC, Krasko A, Le Pennec G, Adell T, Wiens M, Hassanein H, Müller IM, Müller WE (2003) Prog Mol Subcell Biol 33:249–268

    Google Scholar 

  102. Schröder HC, Krasko A, Brandt D, Wiens M, Tahir MN, Tremel W, Müller, WEG (2007) Porifera Res biodiversity innovation sustainability. pp 581–592

  103. Brandstadt K (2005) Curr Opin Biotechnol 16:393–397

    CAS  Google Scholar 

  104. Figueroa MP, Flores L, Sanchez J, Cesaretti N (2008) Micron 39:859–867

    Google Scholar 

  105. Figueroa MP, Barrera F, Cesaretti NN (2008) Micron 39:1027–1035

    Google Scholar 

  106. Nichino H, Mori T, Okahata Y (2002) Chem Commun 2684–2685

  107. Müller WEG, Schloβmacher U, Wang X, Boreiko A, Brandt D, Wolf SE, Tremel W, Schröder HC (2008) FEBS J 275:362–370

    Google Scholar 

  108. Kumar R, Tyagi R, Parmar VS, Samuelson LA, Kumar J, Schoemann A, Westmoreland PR, Watterson AC (2004) Adv Mater 16:1515–1520

    CAS  Google Scholar 

  109. Watterson AC, Parmar VS, Kumar R, Sharma SK, Shakil NA, Tyagi R, Sharma AK, Samuelson LA, Kumar J, Nicolosi R, Shea T (2005) Pure Appl Chem 77:201–208

    CAS  Google Scholar 

  110. Mosurkal R, Samuelson LA, Parmar VS, Kumar J, Watterson AC (2007) Macromolecules 40:7742–7745

    CAS  Google Scholar 

  111. Tyagi R, Pandey MK, Kumar R, Tucci V, Kumar J, Parmar VS, Watterson AC (2007) Polymer Preprints 48:219

    CAS  Google Scholar 

  112. Sahoo B, Brandstadt KF, Lane TH, Gross RA (2003) Polymer Preprints 44:617–618

    CAS  Google Scholar 

  113. Sahoo B, Brandstadt KF, Lane TH, Gross RA (2005) Org Lett 7:3857–3860

    CAS  Google Scholar 

  114. Palsule AS, Poojari Y, Hadzivrettas V, Stauss DR, Clarson SJ, Gross RA (2007) Polymer Preprints 48:979–980

    Google Scholar 

  115. Poojari Y, Palsule AS, Hadzivrettas V, Stauss DR, Clarson SJ, Gross RA (2007) Polymer Preprints 48:982–983

    Google Scholar 

  116. Poojari Y, Palsule AS, Cai M, Clarson SJ, Gross RA (2008) Eur Poly J 44:4139–4145

    CAS  Google Scholar 

  117. Sharma B, Azim A, Azim H, Gross RA, Zini E, Focarete ML, Scandola M (2007) Polymer Preprints 48:981

    CAS  Google Scholar 

  118. Hwu JR, Ethiraj KS (2002) Disilanes in Science of Synthesis, Flemming I (ed), Volume 4: 187–204

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Martin Zelisko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frampton, M.B., Zelisko, P.M. Organosilicon Biotechnology. Silicon 1, 147–163 (2009). https://doi.org/10.1007/s12633-009-9021-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-009-9021-3

Keywords

Navigation