The Potential use of Silicon Isotope Composition of Biogenic Silica as a Proxy for Environmental Change

Abstract

Silicon isotope geochemistry is a relatively new branch of environmental change research. Here we review the recent developments in the preparation of materials, analytical methods and applications of stable silicon isotope geochemistry in the most common types of biogenic silica currently being analysed. These materials are: diatom, radiolarian and siliceous sponges in lake and ocean sediments and plant phytoliths which are preserved in soils. Despite analyses of Si isotopes being carried out on rocks and minerals since the 1950's and the increasingly widespread use of Si isotopes since the 1990's, to date only a relatively small number of studies have applied Si isotope ratios to environmental change. In lake and ocean sediments the analysis of Si isotope ratios from biogenic materials has the potential to provide an important source of palaeoenvironmental information, especially where carbonates are not preserved. In plants and soils few studies have used Si isotopes, but important advances have recently been made in the understanding within plant fractionations. These may be useful in the application of Si isotopes in phytoliths to archaeological and palaeoenvironmental contexts.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Barnes IL, Moore LJ, Machlan LA, Murphy TJ, Shields WR (1975) Absolute isotopic abundance ratios and atomic weight of a reference sample of silicon. J Res Natl Bur Stand 79A:727–735

    CAS  Google Scholar 

  2. 2.

    Reynolds JH, Verhoogen J (1953) Natural variations in the isotopic constitution of silicon. Geochim Cosmochim Acta 3:224–234

    CAS  Google Scholar 

  3. 3.

    Allenby RJ (1954) Determination of the isotopic ratios of silicon in rocks. Geochim Cosmochim Acta 5:40–48

    CAS  Google Scholar 

  4. 4.

    Tilles D (1961) Natural variations in isotopic abundances of silicon. J Geophys Res 66:3003–3014

    CAS  Google Scholar 

  5. 5.

    Tilles D (1961) Natural variations in isotopic abundances of zoned pegmatite. J Geophys Res 66:3015–3020

    CAS  Google Scholar 

  6. 6.

    Epstein S, Taylor HP (1970) The concentration and isotopic composition of hydrogen, carbon and silicon in Apollo 11 lunar rocks and minerals. Proc Apollo 11 Lunar Sci Conf 2:1085–1096

    CAS  Google Scholar 

  7. 7.

    Epstein S, Taylor HP (1970) Stable isotopes, rare gases, solar wind and spallation products. Science 167:533–535

    CAS  Google Scholar 

  8. 8.

    Brzezinski MA, Jones JL, Beucher CP, Demarest MS (2006) Automated determination of silicon isotope natural abundance by the acid decomposition of cesium hexafluosilicate. Anal Chem 78:6109–6114

    CAS  Google Scholar 

  9. 9.

    Georg RB, Reynolds BC, Frank M, Halliday AN (2006) New sample preparation techniques for the determination of Si isotopic compositions using MC-ICPMS. Chem Geol 235:95–104

    CAS  Google Scholar 

  10. 10.

    Leng MJ, Sloane HJ (2008) Combined oxygen and silicon isotope analysis of biogenic silica. J Quat Sci 23:313–319

    Google Scholar 

  11. 11.

    De La Rocha CL (2003) Silicon isotope fractionation by marine sponges and the reconstruction of the silicon isotope composition of ancient deep water. Geology 31:423–426

    Google Scholar 

  12. 12.

    De La Rocha CL (2006) Opal-based isotopic proxies of paleoenvironmental conditions. Glob Biogeochem Cycles. doi:10.1029/2005GB002664

  13. 13.

    Ziegler K, Chadwick OA, Brzezinski MA, Kelly EF (2005) Natural variations of δ30Si ratios during progressive basalt weathering, Hawaiian Islands. Geochim Cosmochim Acta 69:4597–4610

    CAS  Google Scholar 

  14. 14.

    Ziegler K, Chadwick OA, White AF, Brzezinski MA (2005) δ30Si systematics in a granitic saprolite, Puerto Rico. Geology 33:817–820

    CAS  Google Scholar 

  15. 15.

    Georg RB, Reynolds BC, Frank M, Halliday AN (2006) Mechanisms controlling the silicon isotopic compositions of river waters. Earth Planet Sci Lett 249:290–306

    CAS  Google Scholar 

  16. 16.

    Georg RB, Reynolds BC, Burton KW, Halliday AN (2007) Silicon isotope variations accompanying basalt weathering on Iceland. Earth Planet Sci Lett 261:476–490

    CAS  Google Scholar 

  17. 17.

    Hodson MJ, Parker AG, Leng MJ, Sloane HJ (2008) Silicon, oxygen and carbon isotope composition of wheat (Triticum aestivum L.) phytoliths- implications for palaeoecology and archaeology. J Quat Sci 23:331–339

    Google Scholar 

  18. 18.

    Ding TP, Zhou JX, Wana DF, Chen ZY, Wang CY, Zhang F (2008) Silicon isotope fractionation in bamboo and its significance to the biogeochemical cycle of silicon. Geochim Cosmochim Acta 72:1381–1395

    CAS  Google Scholar 

  19. 19.

    Ding TP, Zhou JX, Wan DF, Chen ZY, Wang CY, Zhang F (2008) Silicon isotope fractionation between rice plants and nutrient solution and its significance to the study of the silicon cycle. Geochim Cosmochim Acta 72:5600–5615

    CAS  Google Scholar 

  20. 20.

    Beucher CP, Brzezinskia MA, Jones JL (2008) Sources and biological fractionation of Silicon isotopes in the Eastern Equatorial Pacific. Geochim Cosmochim Acta 72:3063–3073

    CAS  Google Scholar 

  21. 21.

    Lowenstam HA (1986) Mineralization processes in monerans and protoctists. In: Leadbeater BSC, Riding R (eds) Biomineralization in Lower Plants and Animals, Vol 30. Oxford University Press, New York

    Google Scholar 

  22. 22.

    Basile-Doelsch I (2006) Si stable isotopes in the Earth’s surface: a review. J Geochem Explor 88:252–256

    CAS  Google Scholar 

  23. 23.

    Conley DJ (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochem Cycles 16:1121–1129

    Google Scholar 

  24. 24.

    Reynolds BC, Frank M, Halliday AN (2006) Silicon isotope fractionation during nutrient utilization in the North Pacific. Earth Planet Sci Lett 244:431–443

    CAS  Google Scholar 

  25. 25.

    Hutchins DA, Bruland KW (1998) Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling zone. Nature 393:561–564

    CAS  Google Scholar 

  26. 26.

    Takeda S (1998) Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature 393:774–777

    CAS  Google Scholar 

  27. 27.

    Alleman LY, Cardina D, Cocquyt C, Plisnier P-D, Descy J-P, Kimirei I, Sinyinza D, André L (2005) Silicon Isotopic Fractionation in Lake Tanganyika and Its Main Tributaries. J Gt Lakes Res 31:509–519

    CAS  Article  Google Scholar 

  28. 28.

    Street-Perrott FA, Barker PA, Leng MJ, Sloane HJ, Wooller MJ, Ficken KJ, Swain DL (2008) Towards an understanding of late Quaternary variations in the continental biogeochemical cycle of silicon: mult-isotope and sediment-flux data for Lake Rutundu, Mt Kenya, East Africa, since 38 ka BP. J Quat Sci 23:375–387

    Google Scholar 

  29. 29.

    Epstein E (1999) Silicon. Ann Rev Plant Physiol Plant Mol Biol 50:641–664

    CAS  Google Scholar 

  30. 30.

    Madella M, Alexandre A, Ball T (2005) International Code for Phytolith Nomenclature 1.0. Ann Bot 96:253–260

    CAS  Google Scholar 

  31. 31.

    Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot 96:1027–1046

    CAS  Google Scholar 

  32. 32.

    Prychid CJ, Rudall PJ, Gregory M (2003) Systematics and biology of silica bodies in monocotyledons. Bot Rev 69:377–440

    Google Scholar 

  33. 33.

    Ishida S, Parker AG, Kennet D, Hodson MJ (2003) Phytolith analysis from the archaeological site of Kush, Ras al-Khaimah, United Arab Emirates. Quat Res 59:310–321

    Google Scholar 

  34. 34.

    Parker AG, Eckersley L, Smith MM, Goudie AS, Stokes S, White K, Hodson MJ (2004) Holocene vegetation dynamics in the northeastern Rub’ al-Khali desert, Arabian Peninsula: a pollen, phytolith and carbon isotope study. J Quat Sci 19:665–676

    Google Scholar 

  35. 35.

    Bertermann R, Kroger N, Tacke R (2003) Solid-state 29Si MAS NMR studies of diatoms: structural characterization of biosilica deposits. Anal Bioanal Chem 375:630–634

    CAS  Google Scholar 

  36. 36.

    Gendron-Badou A, Coradin T, Maquet J, Frohlich F, Livage J (2003) J Non-Cryst Solids 316:331–7

    CAS  Google Scholar 

  37. 37.

    Gröger C, Sumper M, Brunner E (2008) Silicon uptake and metabolism of the marine diatom Thalassiosira pseudonana: Solid-state 29Si NMR and fluorescence microscopic studies. J Struct Biol 161:55–63

    Google Scholar 

  38. 38.

    Mann S, Perry CC, Williams RJP, Fyfe CA, Gobbi GC, Kennedy GJ (1983) J Chem Soc Chem Commun 168–170

  39. 39.

    Fröhlich F (1989) Deep-sea biogenic silica: new structural and analytical data from infrared analysis—geological implications. Terra Nova 1:267–273

    Google Scholar 

  40. 40.

    Tacke R (1999) Milestones in the biochemistry of silicon: From basic research to biotechnological applications. Angew Chem Int ed 38:3015–3018

    CAS  Google Scholar 

  41. 41.

    Hildebrand M (2000) in Baeuerlein E (ed) Biomineralization: From Biology to Biotechnology and Medical Application. Wiley-VCH, Weinheim

    Google Scholar 

  42. 42.

    Hildebrand M, Wetherbee R (2003) Components and control of silicification in diatoms. Prog Mol Subcell Biol 33:11–57

    CAS  Google Scholar 

  43. 43.

    Perry CC (2003) Silicification: The Processes by Which Organisms Capture and Mineralize Silica. Rev Mineral Geochem 54:291–327

    CAS  Google Scholar 

  44. 44.

    Lewin JC (1955) Silicon metabolism in diatoms. III. Respiration and silicon uptake in Navicula pelliculosa. Can J Microbiol 3:427–433

    Google Scholar 

  45. 45.

    Sullivan CW (1976) Diatom mineralization of silicic-acid. I. Si(OH)4 transport characteristics in Navicula pelliculosa. J Phycol 12:390–396

    CAS  Google Scholar 

  46. 46.

    Tréguer P, Nelson DM, Van Bennekom AJ, DeMaster DJ, Leynaert A, Quéguiner B (1995) The silica balance in the world ocean: a reestimate. Science 268:375–379

    Google Scholar 

  47. 47.

    Martin-Jézéquel V, Hildebrand M, Brzezinski MA (2000) Silicon metabolism in diatoms: implications for growth. J Phycol 36:821–840

    Google Scholar 

  48. 48.

    Claquin P, Martin-Jézéquel V, Kromkamp JC, Veldhuis MJW, Kraay GW (2002) Uncoupling of silicon compared with carbon and nitrogen metabolisms and the role of the cell cycle in continuous cultures of Thalassiosira pseudonana (Bacillariophyceae) under light, nitrogen and phosphorus control. J Phycol 38:922–930

    CAS  Google Scholar 

  49. 49.

    Thamatrakoln K, Kustka AB (2009) When to say when: can excessive drinking explain silicon uptake in diatoms? BioEssays: news and reviews in molecular, cellular and developmental biology 31:322–327

    Google Scholar 

  50. 50.

    Hildebrand M, Dahlin K, Volcani BE (1998) Characterization of a silicon transporter gene family in Cylindrotheca fusiformis: sequences, expression analysis, and identification of homologs in other diatoms. Mol Gen Genet 260:480–486

    CAS  Google Scholar 

  51. 51.

    Vrieling EG, Gieskes WWC, Beelen TPM (1999) Silicon deposition in diatoms: Control by the pH inside the silicon deposition vesicle. J Phycol 35:548–559

    CAS  Google Scholar 

  52. 52.

    Sumper M, Kröger N (2004) Silica formation in diatoms: the function of long-chain polyamines and silaffins. J Mater Chem 14:2059–2065

    CAS  Google Scholar 

  53. 53.

    Patwardhan SV, Clarson SJ, Perry CC (2005) On the role(s) of additives in bioinspired silicification. Chem Commun 9:1113–1121

    Google Scholar 

  54. 54.

    Kröger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132

    Google Scholar 

  55. 55.

    Kröger N, Deutzmann R, Bergsdorf C, Sumper M (2000) Species-specific polyamines from diatoms control silica morphology. Proc Natl Acad Sci 97:14133–14138

    Google Scholar 

  56. 56.

    Kröger N, Lorenz S, Brunner E, Sumper M (2002) Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298:584–586

    Google Scholar 

  57. 57.

    Vrieling EG, Beelen TPM, Sun Q, Hazelaar S, van Santen RA, Gieskes WWC (2004) Ultrasmall, small, and wide angle X-ray scattering analysis of diatom biosilica: interspecific differences in fractal properties. J Mater Chem 14:1970–1975

    CAS  Google Scholar 

  58. 58.

    Currie HA, Perry CC (2007) Silica in plants: Biological, biochemical and chemical studies. Ann Bot 100:1383–1389

    CAS  Google Scholar 

  59. 59.

    Hodson MJ, Sangster AG, Parry DW (1984) An ultrastructural study on the development of silicified tissues in the lemma of Phalaris canariensis L. Proc R Soc Lond B 222:413–425

    CAS  Google Scholar 

  60. 60.

    Perry CC, Williams RJP, Fry SC (1987) Cell wall biosynthesis during silicification of grass hairs. J Plant Physiol 126:437–448

    CAS  Google Scholar 

  61. 61.

    Hodson MJ, Sangster AG, Parry DW (1985) An ultrastructural study on the developmental phases and silicification of the glume of Phalaris canariensis L. Ann Bot 55:649–655

    Google Scholar 

  62. 62.

    Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    CAS  Google Scholar 

  63. 63.

    Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–212

    CAS  Google Scholar 

  64. 64.

    Chiba Y, Mitani N, Yamaji N, Ma JF (2009) HvLsi1 is a silicon influx transporter in barley. Plant J 57:810–818

    CAS  Google Scholar 

  65. 65.

    Yamaji N, Mitani N, Ma JF (2008) A transporter regulating silicon distribution in rice shoots. Plant Cell 20:1381–1389

    CAS  Google Scholar 

  66. 66.

    Mitani N, Yamaji N, Ma JF (2009) Identification of maize silicon influx transporters. Plant Cell Physiol 50:5–12

    CAS  Google Scholar 

  67. 67.

    Ding T, Jiang S, Wan D, Li Y, Li J, Song H, Liu Z, Yao X (1996) Silicon Isotope Geochemistry. Geol Publ House, Beijing, China

    Google Scholar 

  68. 68.

    De La Rocha CL, Brzezinski MA, De Niro MJ (1996) Purification, recovery and laser-driven fluorination of silicon from dissolved and particulate silica for the measurements of natural stable isotopes abundances. Anal Chem 68:3746–3750

    Google Scholar 

  69. 69.

    de Freitas ASW, McCulloch AW, McInnes AG (1991) Recovery of silica from aqueous silicate solutions via trialkyl or tetraalkylammonium silicomolybdate. Can J Chem 69:611–614

    Google Scholar 

  70. 70.

    Karl DM, Tien G (1992) MAGIC: a sensitive and precise method for measuring dissolved phosphorus in aquatic environments. Limnol Oceanogr 37:105–116

    CAS  Google Scholar 

  71. 71.

    Brzezinski MA, Jones JL, Bidle K, Azam F (2003) The Balance Between Silica Production and Silica Dissolution in the Sea. Insights from Monterey Bay, California Applied to the Global Data Set. Limnol Oceanogr 48:1846–1854

    Article  CAS  Google Scholar 

  72. 72.

    Juillet-Leclerc A (1986) In Ricard M (ed) Proceedings of the 8th Diatom Symposium. Koeltz Scientific Books, Koenigstein

    Google Scholar 

  73. 73.

    Hart DM (1988) A safe method for the extraction of plant opal from sediments. Search 19:293–294

    Google Scholar 

  74. 74.

    Shemesh A, Mortlock RA, Smith RJ, Froelich PN (1988) Determination of Ge/Si in marine siliceous microfossils: separation, cleaning and dissolution of diatoms and radiolaria. Mar Chem 25:305–323

    CAS  Google Scholar 

  75. 75.

    Shemesh A, Burckle LH, Hays JD (1995) Late Pleistocene oxygen isotope records of biogenic silica from the Atlantic sector of the Southern Ocean. Paleoceanography 10:179–196

    Google Scholar 

  76. 76.

    Singer AJ, Shemesh A (1995) Climatically linked carbon isotope variation during the past 430, 000 years in Southern Ocean sediments. Paleoceanography 10:171–177

    Google Scholar 

  77. 77.

    Madella M, Powers-Jones AH, Jones MK (1998) A simple method of extraction of opal phytoliths from sediments using a non-toxic heavy liquid. J Archaeol Sci 25:801–803

    Google Scholar 

  78. 78.

    Morley DW, Leng MJ, Mackay AW, Sloane HJ, Rioual P, Battarbee RW (2004) Cleaning of lake sediment samples for diatom oxygen isotope analysis. J Paleolimnol 31:391–401

    Google Scholar 

  79. 79.

    Rings A, Lücke A, Schleser GH (2004) A new method for the quantitative separation of diatom frustules from lake sediments. Limnol Oceanogr Methods 2:25–34

    Google Scholar 

  80. 80.

    Swann GEA, Maslin MA, Leng MJ, Sloane HJ, Haug GH (2006) Diatom δ18O evidence for the development of the modern halocline system in the subarctic northwest Pacific at the onset of major Northern Hemisphere glaciation. Paleoceanography . doi:10.1029/2005PA001147

    Google Scholar 

  81. 81.

    Tyler JJ, Leng MJ, Sloane HJ (2007) The effects of organic removal treatment on the integrity of δ18O measurements from biogenic silica. J Paleolimnol 37:491–497

    Google Scholar 

  82. 82.

    Lentfer CJ, Boyd WE (2000) Simultaneous extraction of phytoliths, pollen and spores from sediments. J Archaeol Sci 27:363–372

    Google Scholar 

  83. 83.

    Parr JF, Lentfer CJ, Boyd WE (2001) A comparative analysis of wet and dry ashing techniques for the extraction of phytoliths from plant material. J Archaeol Sci 28:875–886

    Google Scholar 

  84. 84.

    Piperno DR (1988) Phytolith Analysis: An Archaeological and Geological Perspective. Academic Press, San Diego

    Google Scholar 

  85. 85.

    Giddings JC (1985) A system based on split-flow lateral transport thin (SPLITT) separation cells for rapid and continuous particle fractionation. Sep Sci Tech 20:749–768

    CAS  Google Scholar 

  86. 86.

    Schleser GH, Lücke A, Moschen R, Rings A (2001) Separation of diatoms from sediment and oxygen isotope extraction from their siliceous valves: a new approach. Terra Nostra, 2001/3. Schriften der Alfred-Wegener-Stiftung (6th workshop of the European lake drilling programme, POTSDAM); 187–191

  87. 87.

    Leng MJ, Barker PA (2006) A review of the oxygen isotope composition of lacustrine diatom silica for palaeoclimate reconstruction. Earth-Sci Rev 75:5–27

    CAS  Google Scholar 

  88. 88.

    Brewer TS, Leng MJ, Mackay AW, Lamb AL, Tyler JJ, Marsh NG (2008) Unravelling contamination signals in biogenic silica oxygen isotope composition: the role of major and trace element geochemistry. J Quat Sci 23:321–330

    Google Scholar 

  89. 89.

    Lamb AL, Brewer TS, Leng MJ, Sloane HJ, Lamb HF (2007) A geochemical method for removing the effect of tephra on lake diatom oxygen isotope records. J Paleolimnol 37:499–516

    Google Scholar 

  90. 90.

    De La Rocha CL (2002) Measurement of silicon stable isotope natural abundances via multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Geochem Geophys Geosystems. doi:10.1029/2002GC000310

  91. 91.

    Cardinal D, Allegan LY, de Jong J, Ziegler K, André L (2003) Isotopic composition of silicon measured by multicollector plasma source mass spectrometry in dry plasma mode. J Anal At Spectrom 18:213–218

    CAS  Google Scholar 

  92. 92.

    Reynolds BC, Georg RB, Oberli F, Wiechert U, Halliday AN (2006) Re-assessment of silicon isotope reference materials using high-resolution multi-collector ICP-MS. J Anal At Spectrom 21:266–269

    CAS  Google Scholar 

  93. 93.

    Basile-Doelsch I, Meunier JD, Parron C (2005) Another continental pool in the terrestrial silicon cycle. Nature 3:399–402

    Google Scholar 

  94. 94.

    Ding T, Wan D, Wang C, Zhang F (2004) Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China. Geochim Cosmochim Acta 68:205–216

    CAS  Google Scholar 

  95. 95.

    van den Boorn SHJM, Vroon PZ, van Belle CC, van der Wagt B, Schwieters J, van Bergen MJ (2006) Determination of silicon isotope ratios in silicate materials by high-resolution MC-ICP-MS using a sodium hydroxide sample digestion method. J Anal At Spectrom 21:734–742

    Google Scholar 

  96. 96.

    Chmeleff J, Horn I, Steinhoefel G, von Blanckenburg F (2008) In situ determination of precise stable Si isotope ratios by UV-femtosecond laser ablation high-resolution multi-collector ICP-MS. Chem Geol 29:155–166

    Google Scholar 

  97. 97.

    Alexander CM O’D, Taylor S, Delaney JS, Ma P, Herzog GF (2002) Mass-dependent fractionation of Mg, Si, and Fe isotopes in five stony cosmic spherules. Geochim Cosmochim Acta 66:173–183

    CAS  Google Scholar 

  98. 98.

    De La Rocha CL, Brzezinski MA, DeNiro MJ (2000) A first look at the distribution of the stable isotopes of silicon in natural waters. Geochim Cosmochim Acta 64:2467–2477

    Google Scholar 

  99. 99.

    Varela DE, Pride CJ, Brzezinski MA (2004) Biological fractionation of silicon isotopes in Southern Ocean surface waters. Glob Biogeochem Cycles. doi:10.1029/2003GB002140

  100. 100.

    Cardinal D, Alleman LY, Dehairs F, Savoye N, Trull TW, André L (2005) Relevance of silicon isotopes to Si-nutrient utilization and Si-source assessment in Antarctic waters. Glob Biogeochem Cycles. doi:10.1029/2004GB002364

  101. 101.

    De La Rocha CL, Brzezinski MA, DeNiro MJ, Shemesh A (1998) Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature 395:680–683

    Google Scholar 

  102. 102.

    Brzezinski MA, Pride CJ, Franck VM, Sigman DM, Sarmiento JL, Matsumoto K, Gruber N, Rau GH, Coale KH (2002) A switch from Si(OH)4 to NO3- depletion in the glacial Southern Ocean. Geophys Res Lett. doi:10.1029/12001GL014349

  103. 103.

    Nelson DM, Ahern JA, Herlihy LJ (1991) Cycling of biogenic silica within the upper water column of the Ross Sea. Mar Chem 35:461–476

    CAS  Google Scholar 

  104. 104.

    Brzezinski MA, Phillips DR (1997) Evaluation of 32Si as a tracer for measuring silica production rates in marine waters. Limnol Oceanogr 42:856–865

    CAS  Article  Google Scholar 

  105. 105.

    Wischmeyer AG, De La Rocha CL, Maier-Reimer E, Wolf-Gladrow DA (2003) Control mechanisms for the oceanic distribution of silicon isotopes. Glob Biogeochem Cycles. doi:10.1029/2002GB002022

  106. 106.

    De La Rocha CL, Bickle MJ (2005) Sensitivity of silicon isotopes to whole-ocean changes in the silica cycle. Mar Geol 217:267–282

    Google Scholar 

  107. 107.

    Douthitt CB (1982) The geochemistry of the stable isotopes of silicon. Geochim Cosmochim Acta 46:1449–1458

    CAS  Google Scholar 

  108. 108.

    Spadaro PA (1983) Silicon isotope fractionation by the marine diatom Phaeodactylum tricornutum. Unpublished MSc thesis, University of Chicago

  109. 109.

    De La Rocha CL, Brzezinski MA, DeNiro MJ (1997) Fractionation of silicon isotopes by marine diatoms during biogenic silica formation. Geochim Cosmochim Acta 61:5051–5056

    Google Scholar 

  110. 110.

    Milligan AJ, Varela DE, Brzezinski MA, Morel FMM (2004) Dynamics of silicon metabolism and silicon isotopic discrimination in a marine diatom as a function of pCO2. Limnol Oceanogr 49:322–329

    CAS  Article  Google Scholar 

  111. 111.

    Cardinal D, Savoye N, Trull TW, Dehairs F, Kopczynska EE, Fripiat F, Tison JL, André L (2007) Silicon isotopes in spring Southern Ocean diatoms: large zonal changes despite homogeneity among size fractions. Mar Chem 106:46–62

    CAS  Google Scholar 

  112. 112.

    Matsumoto K, Sarmiento JL, Brzezinski MA (2002) Silicic acid leakage from the Southern Ocean: A possible explanation for glacial atmospheric pCO2. Glob Biogeochem Cycles. doi:10.1029/2001GB001442

  113. 113.

    Reynolds BC, Frank M, Halliday AN (2008) Evidence for a major change in silicon cycling in the subarctic North Pacific at 2.73 Ma. Paleoceanography. doi:10.1029/2007PA001563

  114. 114.

    Beucher CP, Brzezinski MA, Crosta X (2007) Silicic acid dynamics in the glacial subantarctic: implications for the silicic acid leakage hypothesis. Glob Biogeochem Cycles. doi:10.1029/2006GB002746

  115. 115.

    Crosta X, Beucher C, Pahnke K, Brzezinski MA (2007) Silicic acid leakage from the Southern Ocean: opposing effects of nutrient uptake and oceanic circulation. Geophys Res Lett. doi:10.1029/2006GL029083

  116. 116.

    Sun L, Wu LH, Ding TP, Tian SH (2008) Silicon isotope fractionation in rice plants, an experimental study on rice growth under hydroponic conditions. Plant Soil 304:291–300

    CAS  Google Scholar 

  117. 117.

    Opfergelt S, Cardinal D, Henriet C, Draye X, André L, Delvaux B (2006) Silicon isotopic fractionation by banana (Musa spp.) grown in a continuous nutrient flow device. Plant Soil 285:333–345

    CAS  Google Scholar 

  118. 118.

    Opfergelt S, Delvaux B, André L, Cardinal D (2008) Plant silicon isotopic signature might reflect soil weathering degree. Biogeochemistry 91:163–175

    Google Scholar 

  119. 119.

    Engström E, Rodushkin I, Öhlander B, Ingri J, Baxter DC (2008) Silicon isotopic composition of boreal forest vegetation in Northern Sweden. Chem Geol 257:247–256

    Google Scholar 

  120. 120.

    Ding TP, Ma GR, Shui MX, Wan DF, Li RH (2005) Silicon isotope study on rice plants from the Zhejiang province. China Chem Geol 218:41–50

    CAS  Google Scholar 

  121. 121.

    Opfergelt S, Cardinal D, Henriet C, André L, Delvaux B (2006) Silicon isotope fractionation between plant parts in banana: In situ vs. in vitro. J Geochem Explor 88:224–227

    CAS  Google Scholar 

  122. 122.

    Swann GEA, Leng MJ (2009) A review of diatom δ18O in palaeoceanography. Quat Sci Rev 28:384–398

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Melanie J. Leng.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Leng, M.J., Swann, G.E.A., Hodson, M.J. et al. The Potential use of Silicon Isotope Composition of Biogenic Silica as a Proxy for Environmental Change. Silicon 1, 65–77 (2009). https://doi.org/10.1007/s12633-009-9014-2

Download citation

Keywords

  • Si isotope ratios
  • Biogenic silica
  • Environmental change