, Volume 1, Issue 2, pp 65–77 | Cite as

The Potential use of Silicon Isotope Composition of Biogenic Silica as a Proxy for Environmental Change

  • Melanie J. LengEmail author
  • George E. A. Swann
  • Martin J. Hodson
  • Jonathan J. Tyler
  • Siddharth V. Patwardhan
  • Hilary J. Sloane
Original Paper


Silicon isotope geochemistry is a relatively new branch of environmental change research. Here we review the recent developments in the preparation of materials, analytical methods and applications of stable silicon isotope geochemistry in the most common types of biogenic silica currently being analysed. These materials are: diatom, radiolarian and siliceous sponges in lake and ocean sediments and plant phytoliths which are preserved in soils. Despite analyses of Si isotopes being carried out on rocks and minerals since the 1950's and the increasingly widespread use of Si isotopes since the 1990's, to date only a relatively small number of studies have applied Si isotope ratios to environmental change. In lake and ocean sediments the analysis of Si isotope ratios from biogenic materials has the potential to provide an important source of palaeoenvironmental information, especially where carbonates are not preserved. In plants and soils few studies have used Si isotopes, but important advances have recently been made in the understanding within plant fractionations. These may be useful in the application of Si isotopes in phytoliths to archaeological and palaeoenvironmental contexts.


Si isotope ratios Biogenic silica Environmental change 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnes IL, Moore LJ, Machlan LA, Murphy TJ, Shields WR (1975) Absolute isotopic abundance ratios and atomic weight of a reference sample of silicon. J Res Natl Bur Stand 79A:727–735Google Scholar
  2. 2.
    Reynolds JH, Verhoogen J (1953) Natural variations in the isotopic constitution of silicon. Geochim Cosmochim Acta 3:224–234Google Scholar
  3. 3.
    Allenby RJ (1954) Determination of the isotopic ratios of silicon in rocks. Geochim Cosmochim Acta 5:40–48Google Scholar
  4. 4.
    Tilles D (1961) Natural variations in isotopic abundances of silicon. J Geophys Res 66:3003–3014Google Scholar
  5. 5.
    Tilles D (1961) Natural variations in isotopic abundances of zoned pegmatite. J Geophys Res 66:3015–3020Google Scholar
  6. 6.
    Epstein S, Taylor HP (1970) The concentration and isotopic composition of hydrogen, carbon and silicon in Apollo 11 lunar rocks and minerals. Proc Apollo 11 Lunar Sci Conf 2:1085–1096Google Scholar
  7. 7.
    Epstein S, Taylor HP (1970) Stable isotopes, rare gases, solar wind and spallation products. Science 167:533–535Google Scholar
  8. 8.
    Brzezinski MA, Jones JL, Beucher CP, Demarest MS (2006) Automated determination of silicon isotope natural abundance by the acid decomposition of cesium hexafluosilicate. Anal Chem 78:6109–6114Google Scholar
  9. 9.
    Georg RB, Reynolds BC, Frank M, Halliday AN (2006) New sample preparation techniques for the determination of Si isotopic compositions using MC-ICPMS. Chem Geol 235:95–104Google Scholar
  10. 10.
    Leng MJ, Sloane HJ (2008) Combined oxygen and silicon isotope analysis of biogenic silica. J Quat Sci 23:313–319Google Scholar
  11. 11.
    De La Rocha CL (2003) Silicon isotope fractionation by marine sponges and the reconstruction of the silicon isotope composition of ancient deep water. Geology 31:423–426Google Scholar
  12. 12.
    De La Rocha CL (2006) Opal-based isotopic proxies of paleoenvironmental conditions. Glob Biogeochem Cycles. doi:10.1029/2005GB002664
  13. 13.
    Ziegler K, Chadwick OA, Brzezinski MA, Kelly EF (2005) Natural variations of δ30Si ratios during progressive basalt weathering, Hawaiian Islands. Geochim Cosmochim Acta 69:4597–4610Google Scholar
  14. 14.
    Ziegler K, Chadwick OA, White AF, Brzezinski MA (2005) δ30Si systematics in a granitic saprolite, Puerto Rico. Geology 33:817–820Google Scholar
  15. 15.
    Georg RB, Reynolds BC, Frank M, Halliday AN (2006) Mechanisms controlling the silicon isotopic compositions of river waters. Earth Planet Sci Lett 249:290–306Google Scholar
  16. 16.
    Georg RB, Reynolds BC, Burton KW, Halliday AN (2007) Silicon isotope variations accompanying basalt weathering on Iceland. Earth Planet Sci Lett 261:476–490Google Scholar
  17. 17.
    Hodson MJ, Parker AG, Leng MJ, Sloane HJ (2008) Silicon, oxygen and carbon isotope composition of wheat (Triticum aestivum L.) phytoliths- implications for palaeoecology and archaeology. J Quat Sci 23:331–339Google Scholar
  18. 18.
    Ding TP, Zhou JX, Wana DF, Chen ZY, Wang CY, Zhang F (2008) Silicon isotope fractionation in bamboo and its significance to the biogeochemical cycle of silicon. Geochim Cosmochim Acta 72:1381–1395Google Scholar
  19. 19.
    Ding TP, Zhou JX, Wan DF, Chen ZY, Wang CY, Zhang F (2008) Silicon isotope fractionation between rice plants and nutrient solution and its significance to the study of the silicon cycle. Geochim Cosmochim Acta 72:5600–5615Google Scholar
  20. 20.
    Beucher CP, Brzezinskia MA, Jones JL (2008) Sources and biological fractionation of Silicon isotopes in the Eastern Equatorial Pacific. Geochim Cosmochim Acta 72:3063–3073Google Scholar
  21. 21.
    Lowenstam HA (1986) Mineralization processes in monerans and protoctists. In: Leadbeater BSC, Riding R (eds) Biomineralization in Lower Plants and Animals, Vol 30. Oxford University Press, New YorkGoogle Scholar
  22. 22.
    Basile-Doelsch I (2006) Si stable isotopes in the Earth’s surface: a review. J Geochem Explor 88:252–256Google Scholar
  23. 23.
    Conley DJ (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochem Cycles 16:1121–1129Google Scholar
  24. 24.
    Reynolds BC, Frank M, Halliday AN (2006) Silicon isotope fractionation during nutrient utilization in the North Pacific. Earth Planet Sci Lett 244:431–443Google Scholar
  25. 25.
    Hutchins DA, Bruland KW (1998) Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling zone. Nature 393:561–564Google Scholar
  26. 26.
    Takeda S (1998) Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature 393:774–777Google Scholar
  27. 27.
    Alleman LY, Cardina D, Cocquyt C, Plisnier P-D, Descy J-P, Kimirei I, Sinyinza D, André L (2005) Silicon Isotopic Fractionation in Lake Tanganyika and Its Main Tributaries. J Gt Lakes Res 31:509–519CrossRefGoogle Scholar
  28. 28.
    Street-Perrott FA, Barker PA, Leng MJ, Sloane HJ, Wooller MJ, Ficken KJ, Swain DL (2008) Towards an understanding of late Quaternary variations in the continental biogeochemical cycle of silicon: mult-isotope and sediment-flux data for Lake Rutundu, Mt Kenya, East Africa, since 38 ka BP. J Quat Sci 23:375–387Google Scholar
  29. 29.
    Epstein E (1999) Silicon. Ann Rev Plant Physiol Plant Mol Biol 50:641–664Google Scholar
  30. 30.
    Madella M, Alexandre A, Ball T (2005) International Code for Phytolith Nomenclature 1.0. Ann Bot 96:253–260Google Scholar
  31. 31.
    Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot 96:1027–1046Google Scholar
  32. 32.
    Prychid CJ, Rudall PJ, Gregory M (2003) Systematics and biology of silica bodies in monocotyledons. Bot Rev 69:377–440Google Scholar
  33. 33.
    Ishida S, Parker AG, Kennet D, Hodson MJ (2003) Phytolith analysis from the archaeological site of Kush, Ras al-Khaimah, United Arab Emirates. Quat Res 59:310–321Google Scholar
  34. 34.
    Parker AG, Eckersley L, Smith MM, Goudie AS, Stokes S, White K, Hodson MJ (2004) Holocene vegetation dynamics in the northeastern Rub’ al-Khali desert, Arabian Peninsula: a pollen, phytolith and carbon isotope study. J Quat Sci 19:665–676Google Scholar
  35. 35.
    Bertermann R, Kroger N, Tacke R (2003) Solid-state 29Si MAS NMR studies of diatoms: structural characterization of biosilica deposits. Anal Bioanal Chem 375:630–634Google Scholar
  36. 36.
    Gendron-Badou A, Coradin T, Maquet J, Frohlich F, Livage J (2003) J Non-Cryst Solids 316:331–7Google Scholar
  37. 37.
    Gröger C, Sumper M, Brunner E (2008) Silicon uptake and metabolism of the marine diatom Thalassiosira pseudonana: Solid-state 29Si NMR and fluorescence microscopic studies. J Struct Biol 161:55–63Google Scholar
  38. 38.
    Mann S, Perry CC, Williams RJP, Fyfe CA, Gobbi GC, Kennedy GJ (1983) J Chem Soc Chem Commun 168–170Google Scholar
  39. 39.
    Fröhlich F (1989) Deep-sea biogenic silica: new structural and analytical data from infrared analysis—geological implications. Terra Nova 1:267–273Google Scholar
  40. 40.
    Tacke R (1999) Milestones in the biochemistry of silicon: From basic research to biotechnological applications. Angew Chem Int ed 38:3015–3018Google Scholar
  41. 41.
    Hildebrand M (2000) in Baeuerlein E (ed) Biomineralization: From Biology to Biotechnology and Medical Application. Wiley-VCH, WeinheimGoogle Scholar
  42. 42.
    Hildebrand M, Wetherbee R (2003) Components and control of silicification in diatoms. Prog Mol Subcell Biol 33:11–57Google Scholar
  43. 43.
    Perry CC (2003) Silicification: The Processes by Which Organisms Capture and Mineralize Silica. Rev Mineral Geochem 54:291–327Google Scholar
  44. 44.
    Lewin JC (1955) Silicon metabolism in diatoms. III. Respiration and silicon uptake in Navicula pelliculosa. Can J Microbiol 3:427–433Google Scholar
  45. 45.
    Sullivan CW (1976) Diatom mineralization of silicic-acid. I. Si(OH)4 transport characteristics in Navicula pelliculosa. J Phycol 12:390–396Google Scholar
  46. 46.
    Tréguer P, Nelson DM, Van Bennekom AJ, DeMaster DJ, Leynaert A, Quéguiner B (1995) The silica balance in the world ocean: a reestimate. Science 268:375–379Google Scholar
  47. 47.
    Martin-Jézéquel V, Hildebrand M, Brzezinski MA (2000) Silicon metabolism in diatoms: implications for growth. J Phycol 36:821–840Google Scholar
  48. 48.
    Claquin P, Martin-Jézéquel V, Kromkamp JC, Veldhuis MJW, Kraay GW (2002) Uncoupling of silicon compared with carbon and nitrogen metabolisms and the role of the cell cycle in continuous cultures of Thalassiosira pseudonana (Bacillariophyceae) under light, nitrogen and phosphorus control. J Phycol 38:922–930Google Scholar
  49. 49.
    Thamatrakoln K, Kustka AB (2009) When to say when: can excessive drinking explain silicon uptake in diatoms? BioEssays: news and reviews in molecular, cellular and developmental biology 31:322–327Google Scholar
  50. 50.
    Hildebrand M, Dahlin K, Volcani BE (1998) Characterization of a silicon transporter gene family in Cylindrotheca fusiformis: sequences, expression analysis, and identification of homologs in other diatoms. Mol Gen Genet 260:480–486Google Scholar
  51. 51.
    Vrieling EG, Gieskes WWC, Beelen TPM (1999) Silicon deposition in diatoms: Control by the pH inside the silicon deposition vesicle. J Phycol 35:548–559Google Scholar
  52. 52.
    Sumper M, Kröger N (2004) Silica formation in diatoms: the function of long-chain polyamines and silaffins. J Mater Chem 14:2059–2065Google Scholar
  53. 53.
    Patwardhan SV, Clarson SJ, Perry CC (2005) On the role(s) of additives in bioinspired silicification. Chem Commun 9:1113–1121Google Scholar
  54. 54.
    Kröger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132Google Scholar
  55. 55.
    Kröger N, Deutzmann R, Bergsdorf C, Sumper M (2000) Species-specific polyamines from diatoms control silica morphology. Proc Natl Acad Sci 97:14133–14138Google Scholar
  56. 56.
    Kröger N, Lorenz S, Brunner E, Sumper M (2002) Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298:584–586Google Scholar
  57. 57.
    Vrieling EG, Beelen TPM, Sun Q, Hazelaar S, van Santen RA, Gieskes WWC (2004) Ultrasmall, small, and wide angle X-ray scattering analysis of diatom biosilica: interspecific differences in fractal properties. J Mater Chem 14:1970–1975Google Scholar
  58. 58.
    Currie HA, Perry CC (2007) Silica in plants: Biological, biochemical and chemical studies. Ann Bot 100:1383–1389Google Scholar
  59. 59.
    Hodson MJ, Sangster AG, Parry DW (1984) An ultrastructural study on the development of silicified tissues in the lemma of Phalaris canariensis L. Proc R Soc Lond B 222:413–425Google Scholar
  60. 60.
    Perry CC, Williams RJP, Fry SC (1987) Cell wall biosynthesis during silicification of grass hairs. J Plant Physiol 126:437–448Google Scholar
  61. 61.
    Hodson MJ, Sangster AG, Parry DW (1985) An ultrastructural study on the developmental phases and silicification of the glume of Phalaris canariensis L. Ann Bot 55:649–655Google Scholar
  62. 62.
    Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691Google Scholar
  63. 63.
    Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–212Google Scholar
  64. 64.
    Chiba Y, Mitani N, Yamaji N, Ma JF (2009) HvLsi1 is a silicon influx transporter in barley. Plant J 57:810–818Google Scholar
  65. 65.
    Yamaji N, Mitani N, Ma JF (2008) A transporter regulating silicon distribution in rice shoots. Plant Cell 20:1381–1389Google Scholar
  66. 66.
    Mitani N, Yamaji N, Ma JF (2009) Identification of maize silicon influx transporters. Plant Cell Physiol 50:5–12Google Scholar
  67. 67.
    Ding T, Jiang S, Wan D, Li Y, Li J, Song H, Liu Z, Yao X (1996) Silicon Isotope Geochemistry. Geol Publ House, Beijing, ChinaGoogle Scholar
  68. 68.
    De La Rocha CL, Brzezinski MA, De Niro MJ (1996) Purification, recovery and laser-driven fluorination of silicon from dissolved and particulate silica for the measurements of natural stable isotopes abundances. Anal Chem 68:3746–3750Google Scholar
  69. 69.
    de Freitas ASW, McCulloch AW, McInnes AG (1991) Recovery of silica from aqueous silicate solutions via trialkyl or tetraalkylammonium silicomolybdate. Can J Chem 69:611–614Google Scholar
  70. 70.
    Karl DM, Tien G (1992) MAGIC: a sensitive and precise method for measuring dissolved phosphorus in aquatic environments. Limnol Oceanogr 37:105–116Google Scholar
  71. 71.
    Brzezinski MA, Jones JL, Bidle K, Azam F (2003) The Balance Between Silica Production and Silica Dissolution in the Sea. Insights from Monterey Bay, California Applied to the Global Data Set. Limnol Oceanogr 48:1846–1854CrossRefGoogle Scholar
  72. 72.
    Juillet-Leclerc A (1986) In Ricard M (ed) Proceedings of the 8th Diatom Symposium. Koeltz Scientific Books, KoenigsteinGoogle Scholar
  73. 73.
    Hart DM (1988) A safe method for the extraction of plant opal from sediments. Search 19:293–294Google Scholar
  74. 74.
    Shemesh A, Mortlock RA, Smith RJ, Froelich PN (1988) Determination of Ge/Si in marine siliceous microfossils: separation, cleaning and dissolution of diatoms and radiolaria. Mar Chem 25:305–323Google Scholar
  75. 75.
    Shemesh A, Burckle LH, Hays JD (1995) Late Pleistocene oxygen isotope records of biogenic silica from the Atlantic sector of the Southern Ocean. Paleoceanography 10:179–196Google Scholar
  76. 76.
    Singer AJ, Shemesh A (1995) Climatically linked carbon isotope variation during the past 430, 000 years in Southern Ocean sediments. Paleoceanography 10:171–177Google Scholar
  77. 77.
    Madella M, Powers-Jones AH, Jones MK (1998) A simple method of extraction of opal phytoliths from sediments using a non-toxic heavy liquid. J Archaeol Sci 25:801–803Google Scholar
  78. 78.
    Morley DW, Leng MJ, Mackay AW, Sloane HJ, Rioual P, Battarbee RW (2004) Cleaning of lake sediment samples for diatom oxygen isotope analysis. J Paleolimnol 31:391–401Google Scholar
  79. 79.
    Rings A, Lücke A, Schleser GH (2004) A new method for the quantitative separation of diatom frustules from lake sediments. Limnol Oceanogr Methods 2:25–34Google Scholar
  80. 80.
    Swann GEA, Maslin MA, Leng MJ, Sloane HJ, Haug GH (2006) Diatom δ18O evidence for the development of the modern halocline system in the subarctic northwest Pacific at the onset of major Northern Hemisphere glaciation. Paleoceanography . doi: 10.1029/2005PA001147 Google Scholar
  81. 81.
    Tyler JJ, Leng MJ, Sloane HJ (2007) The effects of organic removal treatment on the integrity of δ18O measurements from biogenic silica. J Paleolimnol 37:491–497Google Scholar
  82. 82.
    Lentfer CJ, Boyd WE (2000) Simultaneous extraction of phytoliths, pollen and spores from sediments. J Archaeol Sci 27:363–372Google Scholar
  83. 83.
    Parr JF, Lentfer CJ, Boyd WE (2001) A comparative analysis of wet and dry ashing techniques for the extraction of phytoliths from plant material. J Archaeol Sci 28:875–886Google Scholar
  84. 84.
    Piperno DR (1988) Phytolith Analysis: An Archaeological and Geological Perspective. Academic Press, San DiegoGoogle Scholar
  85. 85.
    Giddings JC (1985) A system based on split-flow lateral transport thin (SPLITT) separation cells for rapid and continuous particle fractionation. Sep Sci Tech 20:749–768Google Scholar
  86. 86.
    Schleser GH, Lücke A, Moschen R, Rings A (2001) Separation of diatoms from sediment and oxygen isotope extraction from their siliceous valves: a new approach. Terra Nostra, 2001/3. Schriften der Alfred-Wegener-Stiftung (6th workshop of the European lake drilling programme, POTSDAM); 187–191Google Scholar
  87. 87.
    Leng MJ, Barker PA (2006) A review of the oxygen isotope composition of lacustrine diatom silica for palaeoclimate reconstruction. Earth-Sci Rev 75:5–27Google Scholar
  88. 88.
    Brewer TS, Leng MJ, Mackay AW, Lamb AL, Tyler JJ, Marsh NG (2008) Unravelling contamination signals in biogenic silica oxygen isotope composition: the role of major and trace element geochemistry. J Quat Sci 23:321–330Google Scholar
  89. 89.
    Lamb AL, Brewer TS, Leng MJ, Sloane HJ, Lamb HF (2007) A geochemical method for removing the effect of tephra on lake diatom oxygen isotope records. J Paleolimnol 37:499–516Google Scholar
  90. 90.
    De La Rocha CL (2002) Measurement of silicon stable isotope natural abundances via multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Geochem Geophys Geosystems. doi:10.1029/2002GC000310
  91. 91.
    Cardinal D, Allegan LY, de Jong J, Ziegler K, André L (2003) Isotopic composition of silicon measured by multicollector plasma source mass spectrometry in dry plasma mode. J Anal At Spectrom 18:213–218Google Scholar
  92. 92.
    Reynolds BC, Georg RB, Oberli F, Wiechert U, Halliday AN (2006) Re-assessment of silicon isotope reference materials using high-resolution multi-collector ICP-MS. J Anal At Spectrom 21:266–269Google Scholar
  93. 93.
    Basile-Doelsch I, Meunier JD, Parron C (2005) Another continental pool in the terrestrial silicon cycle. Nature 3:399–402Google Scholar
  94. 94.
    Ding T, Wan D, Wang C, Zhang F (2004) Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China. Geochim Cosmochim Acta 68:205–216Google Scholar
  95. 95.
    van den Boorn SHJM, Vroon PZ, van Belle CC, van der Wagt B, Schwieters J, van Bergen MJ (2006) Determination of silicon isotope ratios in silicate materials by high-resolution MC-ICP-MS using a sodium hydroxide sample digestion method. J Anal At Spectrom 21:734–742Google Scholar
  96. 96.
    Chmeleff J, Horn I, Steinhoefel G, von Blanckenburg F (2008) In situ determination of precise stable Si isotope ratios by UV-femtosecond laser ablation high-resolution multi-collector ICP-MS. Chem Geol 29:155–166Google Scholar
  97. 97.
    Alexander CM O’D, Taylor S, Delaney JS, Ma P, Herzog GF (2002) Mass-dependent fractionation of Mg, Si, and Fe isotopes in five stony cosmic spherules. Geochim Cosmochim Acta 66:173–183Google Scholar
  98. 98.
    De La Rocha CL, Brzezinski MA, DeNiro MJ (2000) A first look at the distribution of the stable isotopes of silicon in natural waters. Geochim Cosmochim Acta 64:2467–2477Google Scholar
  99. 99.
    Varela DE, Pride CJ, Brzezinski MA (2004) Biological fractionation of silicon isotopes in Southern Ocean surface waters. Glob Biogeochem Cycles. doi:10.1029/2003GB002140
  100. 100.
    Cardinal D, Alleman LY, Dehairs F, Savoye N, Trull TW, André L (2005) Relevance of silicon isotopes to Si-nutrient utilization and Si-source assessment in Antarctic waters. Glob Biogeochem Cycles. doi:10.1029/2004GB002364
  101. 101.
    De La Rocha CL, Brzezinski MA, DeNiro MJ, Shemesh A (1998) Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature 395:680–683Google Scholar
  102. 102.
    Brzezinski MA, Pride CJ, Franck VM, Sigman DM, Sarmiento JL, Matsumoto K, Gruber N, Rau GH, Coale KH (2002) A switch from Si(OH)4 to NO3- depletion in the glacial Southern Ocean. Geophys Res Lett. doi:10.1029/12001GL014349
  103. 103.
    Nelson DM, Ahern JA, Herlihy LJ (1991) Cycling of biogenic silica within the upper water column of the Ross Sea. Mar Chem 35:461–476Google Scholar
  104. 104.
    Brzezinski MA, Phillips DR (1997) Evaluation of 32Si as a tracer for measuring silica production rates in marine waters. Limnol Oceanogr 42:856–865CrossRefGoogle Scholar
  105. 105.
    Wischmeyer AG, De La Rocha CL, Maier-Reimer E, Wolf-Gladrow DA (2003) Control mechanisms for the oceanic distribution of silicon isotopes. Glob Biogeochem Cycles. doi:10.1029/2002GB002022
  106. 106.
    De La Rocha CL, Bickle MJ (2005) Sensitivity of silicon isotopes to whole-ocean changes in the silica cycle. Mar Geol 217:267–282Google Scholar
  107. 107.
    Douthitt CB (1982) The geochemistry of the stable isotopes of silicon. Geochim Cosmochim Acta 46:1449–1458Google Scholar
  108. 108.
    Spadaro PA (1983) Silicon isotope fractionation by the marine diatom Phaeodactylum tricornutum. Unpublished MSc thesis, University of ChicagoGoogle Scholar
  109. 109.
    De La Rocha CL, Brzezinski MA, DeNiro MJ (1997) Fractionation of silicon isotopes by marine diatoms during biogenic silica formation. Geochim Cosmochim Acta 61:5051–5056Google Scholar
  110. 110.
    Milligan AJ, Varela DE, Brzezinski MA, Morel FMM (2004) Dynamics of silicon metabolism and silicon isotopic discrimination in a marine diatom as a function of pCO2. Limnol Oceanogr 49:322–329CrossRefGoogle Scholar
  111. 111.
    Cardinal D, Savoye N, Trull TW, Dehairs F, Kopczynska EE, Fripiat F, Tison JL, André L (2007) Silicon isotopes in spring Southern Ocean diatoms: large zonal changes despite homogeneity among size fractions. Mar Chem 106:46–62Google Scholar
  112. 112.
    Matsumoto K, Sarmiento JL, Brzezinski MA (2002) Silicic acid leakage from the Southern Ocean: A possible explanation for glacial atmospheric pCO2. Glob Biogeochem Cycles. doi:10.1029/2001GB001442
  113. 113.
    Reynolds BC, Frank M, Halliday AN (2008) Evidence for a major change in silicon cycling in the subarctic North Pacific at 2.73 Ma. Paleoceanography. doi: 10.1029/2007PA001563
  114. 114.
    Beucher CP, Brzezinski MA, Crosta X (2007) Silicic acid dynamics in the glacial subantarctic: implications for the silicic acid leakage hypothesis. Glob Biogeochem Cycles. doi:10.1029/2006GB002746
  115. 115.
    Crosta X, Beucher C, Pahnke K, Brzezinski MA (2007) Silicic acid leakage from the Southern Ocean: opposing effects of nutrient uptake and oceanic circulation. Geophys Res Lett. doi: 10.1029/2006GL029083
  116. 116.
    Sun L, Wu LH, Ding TP, Tian SH (2008) Silicon isotope fractionation in rice plants, an experimental study on rice growth under hydroponic conditions. Plant Soil 304:291–300Google Scholar
  117. 117.
    Opfergelt S, Cardinal D, Henriet C, Draye X, André L, Delvaux B (2006) Silicon isotopic fractionation by banana (Musa spp.) grown in a continuous nutrient flow device. Plant Soil 285:333–345Google Scholar
  118. 118.
    Opfergelt S, Delvaux B, André L, Cardinal D (2008) Plant silicon isotopic signature might reflect soil weathering degree. Biogeochemistry 91:163–175Google Scholar
  119. 119.
    Engström E, Rodushkin I, Öhlander B, Ingri J, Baxter DC (2008) Silicon isotopic composition of boreal forest vegetation in Northern Sweden. Chem Geol 257:247–256Google Scholar
  120. 120.
    Ding TP, Ma GR, Shui MX, Wan DF, Li RH (2005) Silicon isotope study on rice plants from the Zhejiang province. China Chem Geol 218:41–50Google Scholar
  121. 121.
    Opfergelt S, Cardinal D, Henriet C, André L, Delvaux B (2006) Silicon isotope fractionation between plant parts in banana: In situ vs. in vitro. J Geochem Explor 88:224–227Google Scholar
  122. 122.
    Swann GEA, Leng MJ (2009) A review of diatom δ18O in palaeoceanography. Quat Sci Rev 28:384–398Google Scholar

Copyright information

© Springer Science & Business Media BV 2009

Authors and Affiliations

  • Melanie J. Leng
    • 1
    • 2
    Email author
  • George E. A. Swann
    • 1
  • Martin J. Hodson
    • 3
  • Jonathan J. Tyler
    • 4
  • Siddharth V. Patwardhan
    • 5
  • Hilary J. Sloane
    • 1
  1. 1.NERC Isotope Geosciences LaboratoryBritish Geological SurveyNottinghamUK
  2. 2.School of GeographyUniversity of NottinghamNottinghamUK
  3. 3.School of Life SciencesOxford Brookes UniversityOxfordUK
  4. 4.Department of BotanyThe Natural History MuseumLondonUK
  5. 5.School of Science and TechnologyNottingham Trent UniversityNottinghamUK

Personalised recommendations