Skip to main content
Log in

Autologes Lipofilling

Ein fester Bestandteil der plastisch-rekonstruktiven und ästhetischen Chirurgie

Autologous lipofilling

An integral part of plastic, reconstructive, and aesthetic surgery

  • Leitthema
  • Published:
Journal für Ästhetische Chirurgie Aims and scope

Zusammenfassung

Die freie Fettgewebstransplantation findet breite klinische Anwendung, wobei die Indikationen von rekonstruktiven Eingriffen nach Operationen, Narbentherapie oder Thoraxdeformitäten bis zu ästhetischen Korrekturen reichen. Bei etwa 1% der im Fettgewebe vorkommenden Zellen handelt es sich um adulte Stammzellen, welche über hohe Differenzierungsmöglichkeiten verfügen und sich deshalb für den Einsatz in verschiedenen chirurgischen Bereichen und insbesondere für das Lipofilling besonders eignen. Diskutiert wird der Einfluss auf die Angiogenese und auf Tumorzellen, der u. a. durch die von den adulten Stammzellen freigesetzten Wachstumsfaktoren und Zytokine ausgeübt wird. Der Einsatz des Lipofillings erscheint bei Patienten ohne Tumoranamnese sicher. Bei Tumorpatienten sollte ein Lipofilling erst nach kompletter Resektion (z. B. bei Brustkrebs) bzw. völliger Remission erfolgen.

Abstract

Free fatty tissue transplantation has broad clinical application, with indications ranging from reconstructive interventions following surgery, scar treatment, and chest deformities to aesthetic corrective surgery. Approximately 1% of fatty tissue cells are adult stem cells, which are highly inclined to differentiation, thereby making them particularly well suited for use in a variety of surgical settings, lipofilling in particular. The effect, triggered for example by growth factors and cytokines released by adult stem cells, this method has on angiogenesis and tumor cells is a topic of discussion. The use of lipofilling appears to be safe in patients with no history of cancer. Lipofilling in cancer patients should only be performed following full resection (e.g., for breast cancer) or total remission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Banas A, Teratani T, Yamamoto Y et al (2009) Rapid hepatic fate specification of adipose-derived stem cells and their therapeutic potential for liver failure. J Gastroenterol Hepatol 24:70–77

    Article  PubMed  CAS  Google Scholar 

  2. Banas A, Teratani T, Yamamoto Y et al (2008) IFATS collection: in vivo therapeutic potential of human adipose tissue mesenchymal stem cells after transplantation into mice with liver injury. Stem Cells 26:2705–2712

    Article  PubMed  CAS  Google Scholar 

  3. Banas A, Teratani T, Yamamoto Y et al (2007) Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 46:219–228

    Article  PubMed  CAS  Google Scholar 

  4. Brzoska M, Geiger H, Gauer S et al (2005) Epithelial differentiation of human adipose tissue-derived adult stem cells. Biochem Biophys Res Commun 330:142–150

    Article  PubMed  CAS  Google Scholar 

  5. Cherubino M, Rubin JP, Miljkovic N et al (2011) Adipose-derived stem cells for wound healing applications. Ann Plast Surg 66:210–215

    Article  PubMed  CAS  Google Scholar 

  6. Coleman S (1995) Long-term survival of fat transplants: controlled demonstrations. Aesthetic Plast Surg 19:421-425

    Article  PubMed  CAS  Google Scholar 

  7. Coleman S (2006) Structural fat grafting: more than a permanent filler. Plast Reconstr Surg 118:108S–120S

    Article  PubMed  CAS  Google Scholar 

  8. Coleman SR (1997) Facial recontouring with lipostructure. Clin Plast Surg 24:347–367

    PubMed  CAS  Google Scholar 

  9. Coleman SR (1998) Structural fat grafting. Aesthet Surg J 18:386, 388

    Article  PubMed  CAS  Google Scholar 

  10. Delay E, Garson S, Tousson G et al (2009) Fat injection to the breast: technique, results, and indications based on 880 procedures over 10 years. Aesthet Surg J 29:360–376

    Article  PubMed  Google Scholar 

  11. Donnenberg VS, Zimmerlin L, Rubin JP et al (2010) Regenerative therapy after cancer: what are the risks? Tissue Eng Part B Rev 16:567–575

    Article  PubMed  Google Scholar 

  12. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  PubMed  CAS  Google Scholar 

  13. Folkman J, Hochberg M (1973) Self-regulation of growth in three dimensions. J Exp Med 138:745–753

    Article  PubMed  CAS  Google Scholar 

  14. Folkman J, Merler E, Abernathy C et al (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133:275–288

    Article  PubMed  CAS  Google Scholar 

  15. Fournier P (1983) Lipodissection in body sculpturing: the dry procedure. Plast Reconstr Surg 72:589–609

    Google Scholar 

  16. Fraser JK, Wulur I, Alfonso Z et al (2006) Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 24:150–154

    Article  PubMed  CAS  Google Scholar 

  17. Fraser JK, Zhu M, Wulur I et al (2008) Adipose-derived stem cells. Methods Mol Biol 449:59–67

    PubMed  Google Scholar 

  18. Froehlich H, Gulati R, Boilson B et al (2009) Carotid repair using autologous adipose-derived endothelial cells. Stroke 40:1886–1891

    Article  PubMed  Google Scholar 

  19. Gir P, Oni G, Brown SA et al (2012) Human adipose stem cells: current clinical applications. Plast Reconstr Surg 129:1277–1290

    PubMed  CAS  Google Scholar 

  20. Hennig T, Lorenz H, Thiel A et al (2007) Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFbeta receptor and BMP profile and is overcome by BMP-6. J Cell Physiol 211:682–691

    Article  PubMed  CAS  Google Scholar 

  21. Heydarkhan-Hagvall S, Schenke-Layland K, Yang JQ et al (2008) Human adipose stem cells: a potential cell source for cardiovascular tissue engineering. Cells Tissues Organs 187:263–274

    Article  PubMed  Google Scholar 

  22. Hong L, Colpan A, Peptan IA et al (2007) 17-Beta estradiol enhances osteogenic and adipogenic differentiation of human adipose-derived stromal cells. Tissue Eng 13:1197–1203

    Article  PubMed  CAS  Google Scholar 

  23. Illouz Y (1984) [Surgical modeling of the silhouette by lipolysis-aspiration or selective lipectomy]. Ann Chir Plast Esthet 29:162–179

    PubMed  CAS  Google Scholar 

  24. Jeon O, Rhie JW, Kwon IK et al (2008) In vivo bone formation following transplantation of human adipose-derived stromal cells that are not differentiated osteogenically. Tissue Eng Part A 14:1285–1294

    Article  PubMed  CAS  Google Scholar 

  25. Jin X, Sun Y, Zhang K et al (2007) Ectopic neocartilage formation from predifferentiated human adipose derived stem cells induced by adenoviral-mediated transfer of hTGF beta2. Biomaterials 28:2994–3003

    Article  PubMed  CAS  Google Scholar 

  26. Joseph M (1912) Handbuch der Kosmetik. Veit, Leipzig

  27. Kang Y, Park C, Kim D et al (2010) Unsorted human adipose tissue-derived stem cells promote angiogenesis and myogenesis in murine ischemic hindlimb model. Microvasc Res 80:310–316

    Article  PubMed  CAS  Google Scholar 

  28. Karnieli O, Izhar-Prato Y, Bulvik S et al (2007) Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells 25:2837–2844

    Article  PubMed  CAS  Google Scholar 

  29. Khouri RK, Eisenmann-Klein M, Cardoso E et al (2012) Brava and autologous fat transfer is a safe and effective breast augmentation alternative: results of a 6-year, 81-patient, prospective multicenter study. Plast Reconstr Surg 129:1173–1187

    Article  PubMed  CAS  Google Scholar 

  30. Khouri RK, Schlenz I, Murphy BJ et al (2000) Nonsurgical breast enlargement using an external soft-tissue expansion system. Plast Reconstr Surg 105:2500–2512 (discussion 2513–2504)

    Article  PubMed  CAS  Google Scholar 

  31. Kilroy GE, Foster SJ, Wu X et al (2007) Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J Cell Physiol 212:702–709

    Article  PubMed  CAS  Google Scholar 

  32. Kim HJ, Im GI (2009) Chondrogenic differentiation of adipose tissue-derived mesenchymal stem cells: greater doses of growth factor are necessary. J Orthop Res 27:612–619

    Article  PubMed  Google Scholar 

  33. Lee J, Han DJ, Kim SC (2008) In vitro differentiation of human adipose tissue-derived stem cells into cells with pancreatic phenotype by regenerating pancreas extract. Biochem Biophys Res Commun 375:547–551

    Article  PubMed  CAS  Google Scholar 

  34. Li X, Yao J, Wu L et al (2010) Osteogenic induction of adipose-derived stromal cells: not a requirement for bone formation in vivo. Artif Organs 34:46–54

    Article  PubMed  Google Scholar 

  35. Li Y, Zhang R, Qiao H et al (2007) Generation of insulin-producing cells from PDX-1 gene-modified human mesenchymal stem cells. J Cell Physiol 211:36–44

    Article  PubMed  CAS  Google Scholar 

  36. Lin Y, Wang T, Wu L et al (2007) Ectopic and in situ bone formation of adipose tissue-derived stromal cells in biphasic calcium phosphate nanocomposite. J Biomed Mater Res A 81:900–910

    PubMed  Google Scholar 

  37. Mojallal A, Lequeux C, Shipkov C et al (2009) Improvement of skin quality after fat grafting: clinical observation and an animal study. Plast Reconstr Surg 124:765–774

    Article  PubMed  CAS  Google Scholar 

  38. Mojallal A, Saint-Cyr M, Garrido I (2009) Autologous fat transfer: controversies and current indications for breast surgery. J Plast Reconstr Aesthet Surg 62:708–710

    Article  PubMed  Google Scholar 

  39. Neuber G (1893) Verhandlungen der Deutschen Gesellschaft für Chirurgie:66

  40. Pallua N, Pulsfort AK, Suschek C et al (2009) Content of the growth factors bFGF, IGF-1, VEGF, and PDGF-BB in freshly harvested lipoaspirate after centrifugation and incubation. Plast Reconstr Surg 123:826–833

    Article  PubMed  CAS  Google Scholar 

  41. Perrot P, Rousseau J, Bouffaut AL et al (2010) Safety concern between autologous fat graft, mesenchymal stem cell and osteosarcoma recurrence. PloS One 5:e10999

    Article  PubMed  Google Scholar 

  42. Petit JY, Botteri E, Lohsiriwat V et al (2012) Locoregional recurrence risk after lipofilling in breast cancer patients. Ann Oncol 23:582–588

    Article  PubMed  CAS  Google Scholar 

  43. Planat-Benard V, Silvestre JS, Cousin B et al (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109:656–663

    Article  PubMed  Google Scholar 

  44. Puissant B, Barreau C, Bourin P et al (2005) Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 129:118–129

    Article  PubMed  Google Scholar 

  45. Rehman J, Traktuev D, Li J et al (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109:1292–1298

    Article  PubMed  Google Scholar 

  46. Rennekampff HO, Reimers K, Gabka CJ et al (2010) Current perspective and limitations of autologous fat transplantation – „consensus meeting“ of the German Society of Plastic, Reconstructive and Aesthetic Surgeons at Hannover; September 2009. Handchir Mikrochir Plast Chir 42:137–142

    Article  PubMed  Google Scholar 

  47. Rigotti G, Marchi A, Galie M et al (2007) Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg 119:1409–1422 (discussion 1423–1404)

    Article  PubMed  CAS  Google Scholar 

  48. Rigotti G, Marchi A, Stringhini P et al (2010) Determining the oncological risk of autologous lipoaspirate grafting for post-mastectomy breast reconstruction. Aesthetic Plast Surg 34:475–480

    Article  PubMed  Google Scholar 

  49. Rodeheffer MS, Birsoy K, Friedman JM (2008) Identification of white adipocyte progenitor cells in vivo. Cell 135:240–249

    Article  PubMed  CAS  Google Scholar 

  50. Rodriguez LV, Alfonso Z, Zhang R et al (2006) Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proc Natl Acad Sci U S A 103:12167–12172

    Article  PubMed  CAS  Google Scholar 

  51. Salgado AJ, Reis RL, Sousa NJ, Gimble JM (2010) Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther 5:103–110

    Article  PubMed  CAS  Google Scholar 

  52. Zimmerlin L, Donnenberg AD, Rubin JP et al (2011) Regenerative therapy and cancer: in vitro and in vivo studies of the interaction between adipose-derived stem cells and breast cancer cells from clinical isolates. Tissue Eng Part A 17:93–106

    Article  PubMed  CAS  Google Scholar 

  53. Zuk PA, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  PubMed  CAS  Google Scholar 

  54. Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kauczok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kauczok, J., Opländer, C. & Pallua, N. Autologes Lipofilling. J. f. Ästhet. Chirurgie 5, 125–130 (2012). https://doi.org/10.1007/s12631-012-0186-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12631-012-0186-z

Schlüsselwörter

Keywords

Navigation