Skip to main content
Log in

Perioperative echocardiographic strain analysis: what anesthesiologists should know

Analyse échocardiographique périopératoire de la déformation cardiaque: ce que les anesthésiologistes devraient savoir

  • Review Article/Brief Review
  • Published:
Canadian Journal of Anesthesia/Journal canadien d'anesthésie Aims and scope Submit manuscript

Abstract

Purpose

Echocardiographic strain analysis by speckle tracking allows assessment of myocardial deformation during the cardiac cycle. Its clinical applications have significantly expanded over the last two decades as a sensitive marker of myocardial dysfunction with important diagnostic and prognostic values. Strain analysis has the potential to become a routine part of the perioperative echocardiographic examination for most anesthesiologist-echocardiographers but its exact role in the perioperative setting is still being defined.

Clinical features

This clinical report reviews the principles underlying strain analysis and describes its main clinical uses pertinent to the field of anesthesiology and perioperative medicine. Strain for assessment of left and right ventricular function as well as atrial strain is described. We also discuss the potential role of strain to aid in perioperative risk stratification, surgical patient selection in cardiac surgery, and guidance of anesthetic monitor choice and clinical decision-making in the perioperative period.

Conclusion

Echocardiographic strain analysis is a powerful tool that allows seeing what conventional 2D imaging sometimes fails to reveal. It often provides pathophysiologic insight into various cardiac diseases at an early stage. Strain analysis is readily feasible and reproducible thanks to the use of highly automated software platforms. This technique shows promising potential to become a valuable tool in the arsenal of the anesthesiologist-echocardiographer and aid in perioperative risk-stratification and clinical decision-making.

Résumé

Objectif

L’analyse échocardiographique de la déformation cardiaque (strain analysis) par suivi des marqueurs acoustiques (speckle-tracking) permet d’évaluer la déformation du myocarde au cours du cycle cardiaque. Ses applications cliniques se sont considérablement développées au cours des deux dernières décennies en tant que marqueur sensible du dysfonctionnement myocardique, avec des valeurs diagnostiques et pronostiques importantes. L’analyse de la déformation cardiaque a le potentiel de devenir une partie intégrante de l’examen échocardiographique périopératoire de routine pour la plupart des anesthésiologistes-échocardiographes, mais son rôle exact dans le cadre périopératoire est encore en cours de définition.

Caractéristiques cliniques

Ce rapport clinique passe en revue les principes qui sous-tendent l’analyse de la déformation cardiaque et décrit ses principales utilisations cliniques pertinentes dans le domaine de l’anesthésiologie et de la médecine périopératoire. L’analyse de la déformation cardique pour l’évaluation de la fonction ventriculaire gauche et droite ainsi que de la déformation auriculaire sont décrites. Nous discutons également du rôle potentiel de l’analyse de la déformation cardiaque pour aider à la stratification du risque périopératoire, à la sélection des patients en chirurgie cardiaque, à l’orientation du choix des moniteurs anesthésiques, et à la prise de décision clinique en période périopératoire.

Conclusion

L’analyse échocardiographique de la déformation cardiaque est un outil puissant qui permet de voir ce que l’imagerie 2D conventionnelle ne parvient parfois pas à révéler. Elle fournit souvent un aperçu physiopathologique de diverses maladies cardiaques à un stade précoce. L’analyse de la déformation cardiaque est facilement réalisable et reproductible grâce à l’utilisation de plateformes logicielles hautement automatisées. Cette technique est potentiellement prometteuse et pourrait devenir un outil précieux dans l’arsenal de l’anesthésiologiste-échocardiographe et aider à la stratification du risque périopératoire et à la prise de décision clinique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Duncan AE, Alfirevic A, Sessler DI, Popovic ZB, Thomas JD. Perioperative assessment of myocardial deformation. Anesth Analg 2014; 118: 525–44. https://doi.org/10.1213/ane.0000000000000088

    Article  PubMed  PubMed Central  Google Scholar 

  2. Benson MJ, Silverton N, Morrissey C, Zimmerman J. Strain imaging: an everyday tool for the perioperative echocardiographer. J Cardiothorac Vasc Anesth 2020; 34: 2707–17. https://doi.org/10.1053/j.jvca.2019.11.035

    Article  PubMed  Google Scholar 

  3. Yingchoncharoen T, Agarwal S, Popović ZB, Marwick TH. Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr 2013; 26: 185–91. https://doi.org/10.1016/j.echo.2012.10.008

    Article  PubMed  Google Scholar 

  4. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 2010; 23: 685–713. https://doi.org/10.1016/j.echo.2010.05.010

    Article  PubMed  Google Scholar 

  5. Fine NM, Chen L, Bastiansen PM, et al. Reference values for right ventricular strain in patients without cardiopulmonary disease: a prospective evaluation and meta-analysis. Echocardiography 2015; 32: 787–96. https://doi.org/10.1111/echo.12806

    Article  PubMed  Google Scholar 

  6. Edvardsen T, Gerber BL, Garot J, Bluemke DA, Lima JA, Smiseth OA. Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: validation against three-dimensional tagged magnetic resonance imaging. Circulation 2002; 106: 50–6. https://doi.org/10.1161/01.cir.0000019907.77526.75

    Article  PubMed  Google Scholar 

  7. Skubas NJ. Two-dimensional, non-Doppler strain imaging during anesthesia and cardiac surgery. Echocardiography 2009; 26: 345–53. https://doi.org/10.1111/j.1540-8175.2008.00868.x

    Article  PubMed  Google Scholar 

  8. Voigt JU, Pedrizzetti G, Lysyansky P, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging 2015; 16: 1–11. https://doi.org/10.1093/ehjci/jeu184

    Article  CAS  PubMed  Google Scholar 

  9. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015; 28: 1-39.e14. https://doi.org/10.1016/j.echo.2014.10.003

    Article  PubMed  Google Scholar 

  10. Smiseth OA, Torp H, Opdahl A, Haugaa KH, Urheim S. Myocardial strain imaging: how useful is it in clinical decision making? Eur Heart J 2016; 37: 1196–207. https://doi.org/10.1093/eurheartj/ehv529

    Article  PubMed  Google Scholar 

  11. Luis SA, Chan J, Pellikka PA. Echocardiographic assessment of left ventricular systolic function: an overview of contemporary techniques, including speckle-tracking echocardiography. Mayo Clin Proc 2019; 94: 125–38. https://doi.org/10.1016/j.mayocp.2018.07.017

    Article  PubMed  Google Scholar 

  12. Hoit BD. Strain and strain rate echocardiography and coronary artery disease. Circ Cardiovasc Imaging 2011; 4: 179-90. https://doi.org/10.1161/circimaging.110.959817

    Article  PubMed  Google Scholar 

  13. Algranati D, Kassab GS, Lanir Y. Why is the subendocardium more vulnerable to ischemia? A new paradigm. Am J Physiol Heart Circ Physiol 2011; 300: H1090–100. https://doi.org/10.1152/ajpheart.00473.2010

    Article  CAS  PubMed  Google Scholar 

  14. Bansal M, Kasliwal RR. How do I do it? Speckle-tracking echocardiography. Indian Heart J 2013; 65: 117–23. https://doi.org/10.1016/j.ihj.2012.12.004

    Article  PubMed  Google Scholar 

  15. Choi JO, Cho SW, Song YB, et al. Longitudinal 2D strain at rest predicts the presence of left main and three vessel coronary artery disease in patients without regional wall motion abnormality. Eur J Echocardiogr 2009; 10: 695–701. https://doi.org/10.1093/ejechocard/jep041

    Article  PubMed  Google Scholar 

  16. Biering-Sørensen T, Hoffmann S, Mogelvang R, et al. Myocardial strain analysis by 2-dimensional speckle tracking echocardiography improves diagnostics of coronary artery stenosis in stable angina pectoris. Circ Cardiovasc Imaging 2014; 7: 58–65. https://doi.org/10.1161/circimaging.113.000989

    Article  PubMed  Google Scholar 

  17. Ternacle J, Berry M, Alonso E, et al. Incremental value of global longitudinal strain for predicting early outcome after cardiac surgery. Eur Heart J Cardiovasc Imaging 2013; 14: 77–84. https://doi.org/10.1093/ehjci/jes156

    Article  PubMed  Google Scholar 

  18. Kearney LG, Lu K, Ord M, et al. Global longitudinal strain is a strong independent predictor of all-cause mortality in patients with aortic stenosis. Eur Heart J Cardiovasc Imaging 2012; 13: 827–33. https://doi.org/10.1093/ehjci/jes115

    Article  CAS  PubMed  Google Scholar 

  19. Kempny A, Diller GP, Kaleschke G, et al. Longitudinal left ventricular 2D strain is superior to ejection fraction in predicting myocardial recovery and symptomatic improvement after aortic valve implantation. Int J Cardiol 2013; 167: 2239–43. https://doi.org/10.1016/j.ijcard.2012.06.012

    Article  PubMed  Google Scholar 

  20. Sonny A, Alfirevic A, Sale S, et al. Reduced left ventricular global longitudinal strain predicts prolonged hospitalization: a cohort analysis of patients having aortic valve replacement surgery. Anesth Analg 2018; 126: 1484–93. https://doi.org/10.1213/ane.0000000000002684

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ng AC, Prihadi EA, Antoni ML, et al. Left ventricular global longitudinal strain is predictive of all-cause mortality independent of aortic stenosis severity and ejection fraction. Eur Heart J Cardiovasc Imaging 2018; 19: 859-67. https://doi.org/10.1093/ehjci/jex189

    Article  PubMed  Google Scholar 

  22. Lee SH, Oh JK, Lee SA, et al. Incremental prognostic value of left ventricular global longitudinal strain in patients with preserved ejection fraction undergoing transcatheter aortic valve implantation. J Am Soc Echocardiogr 2022; 35: 947–55. https://doi.org/10.1016/j.echo.2022.04.013

    Article  PubMed  Google Scholar 

  23. Lancellotti P, Cosyns B, Zacharakis D, et al. Importance of left ventricular longitudinal function and functional reserve in patients with degenerative mitral regurgitation: assessment by two-dimensional speckle tracking. J Am Soc Echocardiogr 2008; 21: 1331–6. https://doi.org/10.1016/j.echo.2008.09.023

    Article  PubMed  Google Scholar 

  24. Florescu M, Benea DC, Rimbas RC, et al. Myocardial systolic velocities and deformation assessed by speckle tracking for early detection of left ventricular dysfunction in asymptomatic patients with severe primary mitral regurgitation. Echocardiography 2012; 29: 326–33. https://doi.org/10.1111/j.1540-8175.2011.01563.x

    Article  PubMed  Google Scholar 

  25. Witkowski TG, Thomas JD, Debonnaire PJ, et al. Global longitudinal strain predicts left ventricular dysfunction after mitral valve repair. Eur Heart J Cardiovasc Imaging 2013; 14: 69–76. https://doi.org/10.1093/ehjci/jes155

    Article  PubMed  Google Scholar 

  26. Prihadi EA, van der Bijl P, Dietz M, et al. Prognostic implications of right ventricular free wall longitudinal strain in patients with significant functional tricuspid regurgitation. Circ Cardiovasc Imaging 2019; 12: e008666. https://doi.org/10.1161/circimaging.118.008666

    Article  PubMed  Google Scholar 

  27. Bannehr M, Kahn U, Liebchen J, et al. Right ventricular longitudinal strain predicts survival in patients with functional tricuspid regurgitation. Can J Cardiol 2021; 37: 1086–93. https://doi.org/10.1016/j.cjca.2021.01.006

    Article  PubMed  Google Scholar 

  28. Elkaryoni A, Altibi AM, Khan MS, et al. Global longitudinal strain assessment of the left ventricle by speckle tracking echocardiography detects acute cellular rejection in orthotopic heart transplant recipients: a systematic review and meta-analysis. Echocardiography 2020; 37: 302–9. https://doi.org/10.1111/echo.14586

    Article  PubMed  Google Scholar 

  29. Kraigher-Krainer E, Shah AM, Gupta DK, et al. Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J Am Coll Cardiol 2014; 63: 447–56. https://doi.org/10.1016/j.jacc.2013.09.052

    Article  PubMed  Google Scholar 

  30. Oikonomou EK, Kokkinidis DG, Kampaktsis PN, et al. Assessment of prognostic value of left ventricular global longitudinal strain for early prediction of chemotherapy-induced cardiotoxicity: a systematic review and meta-analysis. JAMA Cardiol 2019; 4: 1007–18. https://doi.org/10.1001/jamacardio.2019.2952

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sawaya H, Sebag IA, Plana JC, et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol 2011; 107: 1375–80. https://doi.org/10.1016/j.amjcard.2011.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Plack DL, Royer O, Couture EJ, Nabzdyk CG. Sepsis-induced cardiomyopathy reviewed: The case for early consideration of mechanical support. J Cardiothorac Vasc Anesth 2022; 36: 3916–26. https://doi.org/10.1053/j.jvca.2022.04.025

    Article  PubMed  Google Scholar 

  33. Orde SR, Pulido JN, Masaki M, et al. Outcome prediction in sepsis: speckle tracking echocardiography based assessment of myocardial function. Crit Care 2014; 18: R149. https://doi.org/10.1186/cc13987

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sanfilippo F, Corredor C, Fletcher N, et al. Left ventricular systolic function evaluated by strain echocardiography and relationship with mortality in patients with severe sepsis or septic shock: a systematic review and meta-analysis. Crit Care 2018; 22: 183. https://doi.org/10.1186/s13054-018-2113-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vallabhajosyula S, Rayes HA, Sakhuja A, Murad MH, Geske JB, Jentzer JC. Global longitudinal strain using speckle-tracking echocardiography as a mortality predictor in sepsis: a systematic review. J Intensive Care Med 2019; 34: 87–93. https://doi.org/10.1177/0885066618761750

    Article  PubMed  Google Scholar 

  36. Hai PD, Binh NT, Hien NVQ, et al. Prognostic role of left ventricular systolic function measured by speckle tracking echocardiography in septic shock. Biomed Res Int 2020; 2020: 7927353. https://doi.org/10.1155/2020/7927353

    Article  PubMed  PubMed Central  Google Scholar 

  37. Beesley SJ, Sorensen J, Walkey AJ, et al. Long-term implications of abnormal left ventricular strain during sepsis. Crit Care Med 2021; 49: e444–53. https://doi.org/10.1097/ccm.0000000000004886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sengupta PP, Krishnamoorthy VK, Abhayaratna WP, et al. Disparate patterns of left ventricular mechanics differentiate constrictive pericarditis from restrictive cardiomyopathy. JACC Cardiovasc Imaging 2008; 1: 29–38. https://doi.org/10.1016/j.jcmg.2007.10.006

    Article  PubMed  Google Scholar 

  39. Buss SJ, Emami M, Mereles D, et al. Longitudinal left ventricular function for prediction of survival in systemic light-chain amyloidosis: incremental value compared with clinical and biochemical markers. J Am Coll Cardiol 2012; 60: 1067–76. https://doi.org/10.1016/j.jacc.2012.04.043

    Article  PubMed  Google Scholar 

  40. Muraru D, Onciul S, Peluso D, et al. Sex- and method-specific reference values for right ventricular strain by 2-dimensional speckle-tracking echocardiography. Circ Cardiovasc Imaging 2016; 9: e003866. https://doi.org/10.1161/circimaging.115.003866

    Article  PubMed  Google Scholar 

  41. Kukulski T, She L, Racine N, et al. Implication of right ventricular dysfunction on long-term outcome in patients with ischemic cardiomyopathy undergoing coronary artery bypass grafting with or without surgical ventricular reconstruction. J Thorac Cardiovasc Surg 2015; 149: 1312–21. https://doi.org/10.1016/j.jtcvs.2014.09.117

    Article  PubMed  Google Scholar 

  42. Pacheco C, Tremblay-Gravel M, Marquis-Gravel G, et al. Association between right ventricular dysfunction and adverse outcomes in peripartum cardiomyopathy: insights from the BRO-HF Quebec cohort study. CJC Open 2022; 4: 913–20. https://doi.org/10.1016/j.cjco.2022.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  43. Konstam MA, Kiernan MS, Bernstein D, et al. Evaluation and management of right-sided heart failure: a scientific statement from the American Heart Association. Circulation 2018; 137: e578–622. https://doi.org/10.1161/cir.0000000000000560

    Article  PubMed  Google Scholar 

  44. Padang R, Chandrashekar N, Indrabhinduwat M, et al. Aetiology and outcomes of severe right ventricular dysfunction. Eur Heart J 2020; 41: 1273–82. https://doi.org/10.1093/eurheartj/ehaa037

    Article  PubMed  Google Scholar 

  45. Hayek S, Sims DB, Markham DW, Butler J, Kalogeropoulos AP. Assessment of right ventricular function in left ventricular assist device candidates. Circ Cardiovasc Imaging 2014; 7: 379–89. https://doi.org/10.1161/circimaging.113.001127

    Article  PubMed  PubMed Central  Google Scholar 

  46. Guendouz S, Rappeneau S, Nahum J, et al. Prognostic significance and normal values of 2D strain to assess right ventricular systolic function in chronic heart failure. Circ J 2012; 76: 127–36. https://doi.org/10.1253/circj.cj-11-0778

    Article  PubMed  Google Scholar 

  47. Carluccio E, Biagioli P, Lauciello R, et al. Superior prognostic value of right ventricular free wall compared to global longitudinal strain in patients with heart failure. J Am Soc Echocardiogr 2019; 32: 836–44. https://doi.org/10.1016/j.echo.2019.02.011

    Article  PubMed  Google Scholar 

  48. Simon MA, Rajagopalan N, Mathier MA, Shroff SG, Pinsky MR, López-Candales A. Tissue Doppler imaging of right ventricular decompensation in pulmonary hypertension. Congest Heart Fail 2009; 15: 271–6. https://doi.org/10.1111/j.1751-7133.2009.00113.x

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tadic M, Nita N, Schneider L, et al. The predictive value of right ventricular longitudinal strain in pulmonary hypertension, heart failure, and valvular diseases. Front Cardiovasc Med 2021; 8: 698158. https://doi.org/10.3389/fcvm.2021.698158

    Article  PubMed  PubMed Central  Google Scholar 

  50. Vijiiac A, Onciul S, Guzu C, et al. The prognostic value of right ventricular longitudinal strain and 3D ejection fraction in patients with dilated cardiomyopathy. Int J Cardiovasc Imaging 2021; 37: 3233–44. https://doi.org/10.1007/s10554-021-02322-z

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lanspa MJ, Cirulis MM, Wiley BM, et al. Right ventricular dysfunction in early sepsis and septic shock. Chest 2021; 159: 1055–63. https://doi.org/10.1016/j.chest.2020.09.274

    Article  PubMed  Google Scholar 

  52. Ternacle J, Berry M, Cognet T, et al. Prognostic value of right ventricular two-dimensional global strain in patients referred for cardiac surgery. J Am Soc Echocardiogr 2013; 26: 721–6. https://doi.org/10.1016/j.echo.2013.03.021

    Article  PubMed  Google Scholar 

  53. Ting PC, Chou AH, Liao CC, et al. Comparison of right ventricular measurements by perioperative transesophageal echocardiography as a predictor of hemodynamic instability following cardiac surgery. J Chin Med Assoc 2017; 80: 774–81. https://doi.org/10.1016/j.jcma.2017.08.009

    Article  PubMed  Google Scholar 

  54. Grant AD, Smedira NG, Starling RC, Marwick TH. Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation. J Am Coll Cardiol 2012; 60: 521–8. https://doi.org/10.1016/j.jacc.2012.02.073

    Article  PubMed  Google Scholar 

  55. Liang LW, Jamil A, Mazurek JA, et al. Right ventricular global longitudinal strain as a predictor of acute and early right heart failure post left ventricular assist device implantation. ASAIO J 2022; 68: 333–9. https://doi.org/10.1097/mat.0000000000001467

    Article  PubMed  PubMed Central  Google Scholar 

  56. Park JH, Negishi K, Kwon DH, Popovic ZB, Grimm RA, Marwick TH. Validation of global longitudinal strain and strain rate as reliable markers of right ventricular dysfunction: comparison with cardiac magnetic resonance and outcome. J Cardiovasc Ultrasound 2014; 22: 113–20. https://doi.org/10.4250/jcu.2014.22.3.113

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kaw R, Hernandez AV, Pasupuleti V, et al. Effect of diastolic dysfunction on postoperative outcomes after cardiovascular surgery: a systematic review and meta-analysis. J Thorac Cardiovasc Surg 2016; 152: 1142–53. https://doi.org/10.1016/j.jtcvs.2016.05.057

    Article  PubMed  Google Scholar 

  58. Metkus TS, Suarez-Pierre A, Crawford TC, et al. Diastolic dysfunction is common and predicts outcome after cardiac surgery. J Cardiothorac Surg 2018; 13: 67. https://doi.org/10.1186/s13019-018-0744-3

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2016; 29: 277–314. https://doi.org/10.1016/j.echo.2016.01.011

    Article  PubMed  Google Scholar 

  60. Borde D, Joshi S, Jasapara A, Joshi P, Asegaonkar B, Apsingekar P. Left atrial strain as a single parameter to predict left ventricular diastolic dysfunction and elevated left ventricular filling pressure in patients undergoing off-pump coronary artery bypass grafting. J Cardiothorac Vasc Anesth 2021; 35: 1618–25. https://doi.org/10.1053/j.jvca.2020.11.066

    Article  PubMed  Google Scholar 

  61. Voigt JU, Mǎlǎescu GG, Haugaa K, Badano L. How to do LA strain. Eur Heart J Cardiovasc Imaging 2020; 21: 715–7. https://doi.org/10.1093/ehjci/jeaa091

    Article  PubMed  Google Scholar 

  62. To AC, Flamm SD, Marwick TH, Klein AL. Clinical utility of multimodality LA imaging: assessment of size, function, and structure. JACC Cardiovasc Imaging 2011; 4: 788–98. https://doi.org/10.1016/j.jcmg.2011.02.018

    Article  PubMed  Google Scholar 

  63. Wakami K, Ohte N, Asada K, et al. Correlation between left ventricular end-diastolic pressure and peak left atrial wall strain during left ventricular systole. J Am Soc Echocardiogr 2009; 22: 847–51. https://doi.org/10.1016/j.echo.2009.04.026

    Article  PubMed  Google Scholar 

  64. Cameli M, Lisi M, Mondillo S, et al. Left atrial longitudinal strain by speckle tracking echocardiography correlates well with left ventricular filling pressures in patients with heart failure. Cardiovasc Ultrasound 2010; 8: 14. https://doi.org/10.1186/1476-7120-8-14

    Article  PubMed  PubMed Central  Google Scholar 

  65. Malagoli A, Rossi L, Bursi F, et al. Left atrial function predicts cardiovascular events in patients with chronic heart failure with reduced ejection fraction. J Am Soc Echocardiogr 2019; 32: 248–56. https://doi.org/10.1016/j.echo.2018.08.012

    Article  PubMed  Google Scholar 

  66. Santos AB, Roca GQ, Claggett B, et al. Prognostic relevance of left atrial dysfunction in heart failure with preserved ejection fraction. Circ Heart Fail 2016; 9: e002763. https://doi.org/10.1161/circheartfailure.115.002763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pessoa-Amorim G, Mancio J, Vouga L, et al. Impaired left atrial strain as a predictor of new-onset atrial fibrillation after aortic valve replacement independently of left atrial size [Spanish]. Rev Esp Cardiol (Engl Ed) 2018; 71: 466–76. https://doi.org/10.1016/j.rec.2017.10.005

    Article  PubMed  Google Scholar 

  68. Rong LQ, Menon A, Lopes AJ, et al. Left atrial strain quantification by intraoperative transesophageal echocardiography: validation with transthoracic echocardiography. J Cardiothorac Vasc Anesth 2022; 36: 2412–7. https://doi.org/10.1053/j.jvca.2021.11.017

    Article  PubMed  Google Scholar 

  69. Peluso D, Badano LP, Muraru D, et al. Right atrial size and function assessed with three-dimensional and speckle-tracking echocardiography in 200 healthy volunteers. Eur Heart J Cardiovasc Imaging 2013; 14: 1106–14. https://doi.org/10.1093/ehjci/jet024

    Article  PubMed  Google Scholar 

  70. Hosseinsabet A, Mahmoudian R, Jalali A, Mohseni-Badalabadi R, Davarpasand T. Normal ranges of right atrial strain and strain rate by two-dimensional speckle-tracking echocardiography: a systematic review and meta-analysis. Front Cardiovasc Med 2021; 8: 771647. https://doi.org/10.3389/fcvm.2021.771647

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hasselberg NE, Kagiyama N, Soyama Y, et al. The prognostic value of right atrial strain imaging in patients with precapillary pulmonary hypertension. J Am Soc Echocardiogr 2021; 34: 851–61. https://doi.org/10.1016/j.echo.2021.03.007

    Article  PubMed  Google Scholar 

  72. Querejeta Roca G, Campbell P, Claggett B, Solomon SD, Shah AM. Right atrial function in pulmonary arterial hypertension. Circ Cardiovasc Imaging 2015; 8: e003521. https://doi.org/10.1161/circimaging.115.003521

    Article  PubMed  Google Scholar 

  73. Padeletti M, Cameli M, Lisi M, et al. Right atrial speckle tracking analysis as a novel noninvasive method for pulmonary hemodynamics assessment in patients with chronic systolic heart failure. Echocardiography 2011; 28: 658–64. https://doi.org/10.1111/j.1540-8175.2011.01413.x

    Article  PubMed  Google Scholar 

  74. Sato T, Tsujino I, Ohira H, et al. Right atrial volume and reservoir function are novel independent predictors of clinical worsening in patients with pulmonary hypertension. J Heart Lung Transplant 2015; 34: 414–23. https://doi.org/10.1016/j.healun.2015.01.984

    Article  PubMed  Google Scholar 

  75. Zeljkovic I, Bulj N, Kordić K, et al. Atrial appendages' mechanics assessed by 3D transoesophageal echocardiography as predictors of atrial fibrillation recurrence after pulmonary vein isolation. Int J Cardiol Heart Vasc 2020; 31: 100642. https://doi.org/10.1016/j.ijcha.2020.100642

    Article  PubMed  PubMed Central  Google Scholar 

  76. Mor-Avi V, Lang RM, Badano LP, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr 2011; 24: 277–313. https://doi.org/10.1016/j.echo.2011.01.015

    Article  PubMed  Google Scholar 

  77. Johnson C, Kuyt K, Oxborough D, Stout M. Practical tips and tricks in measuring strain, strain rate and twist for the left and right ventricles. Echo Res Pract 2019; 6: R87–98. https://doi.org/10.1530/erp-19-0020

    Article  PubMed  PubMed Central  Google Scholar 

  78. Tousignant C, Desmet M, Bowry R, Harrington AM, Cruz JD, Mazer CD. Speckle tracking for the intraoperative assessment of right ventricular function: a feasibility study. J Cardiothorac Vasc Anesth 2010; 24: 275–9. https://doi.org/10.1053/j.jvca.2009.10.022

    Article  PubMed  Google Scholar 

  79. Marcucci CE, Samad Z, Rivera J, et al. A comparative evaluation of transesophageal and transthoracic echocardiography for measurement of left ventricular systolic strain using speckle tracking. J Cardiothorac Vasc Anesth 2012; 26: 17–25. https://doi.org/10.1053/j.jvca.2011.06.002

    Article  PubMed  Google Scholar 

  80. Yamada A, Luis SA, Sathianathan D, et al. Reproducibility of regional and global longitudinal strains derived from two-dimensional speckle-tracking and doppler tissue imaging between expert and novice readers during quantitative dobutamine stress echocardiography. J Am Soc Echocardiogr 2014; 27: 880–7. https://doi.org/10.1016/j.echo.2014.04.016

    Article  PubMed  Google Scholar 

  81. Plana JC, Galderisi M, Barac A, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2014; 27: 911–39. https://doi.org/10.1016/j.echo.2014.07.012

    Article  PubMed  Google Scholar 

  82. Serri K, Reant P, Lafitte M, et al. Global and regional myocardial function quantification by two-dimensional strain: application in hypertrophic cardiomyopathy. J Am Coll Cardiol 2006; 47: 1175–81. https://doi.org/10.1016/j.jacc.2005.10.061

    Article  PubMed  Google Scholar 

  83. Afonso L, Kondur A, Simegn M, et al. Two-dimensional strain profiles in patients with physiological and pathological hypertrophy and preserved left ventricular systolic function: a comparative analyses. BMJ Open 2012; 2: e001390. https://doi.org/10.1136/bmjopen-2012-001390

    Article  PubMed  PubMed Central  Google Scholar 

  84. Pagourelias ED, Mirea O, Duchenne J, et al. Echo parameters for differential diagnosis in cardiac amyloidosis: a head-to-head comparison of deformation and nondeformation parameters. Circ Cardiovasc Imaging 2017; 10: e005588. https://doi.org/10.1161/circimaging.116.005588

    Article  PubMed  Google Scholar 

  85. Di Nunzio D, Recupero A, de Gregorio C, Zito C, Carerj S, Di Bella G. Echocardiographic findings in cardiac amyloidosis: inside two-dimensional, Doppler, and strain imaging. Curr Cardiol Rep 2019; 21: 7. https://doi.org/10.1007/s11886-019-1094-z

    Article  PubMed  Google Scholar 

  86. Anwer S, Guastafierro F, Erhart L, et al. Right atrial strain and cardiovascular outcome in arrhythmogenic right ventricular cardiomyopathy. Eur Heart J Cardiovasc Imaging 2022; 23: 970–8. https://doi.org/10.1093/ehjci/jeac070

    Article  PubMed  Google Scholar 

  87. Nucifora G, Schuijf JD, Delgado V, et al. Incremental value of subclinical left ventricular systolic dysfunction for the identification of patients with obstructive coronary artery disease. Am Heart J 2010; 159: 148–57. https://doi.org/10.1016/j.ahj.2009.10.030

    Article  PubMed  Google Scholar 

  88. Schauer J, Caris E, Soriano B, et al. The diagnostic role of echocardiographic strain analysis in patients presenting with chest pain and elevated troponin: a multicenter study. J Am Soc Echocardiogr 2022; 35: 857–67. https://doi.org/10.1016/j.echo.2022.03.009

    Article  PubMed  Google Scholar 

  89. Potter EL, Ramkumar S, Kawakami H, et al. Association of asymptomatic diastolic dysfunction assessed by left atrial strain with incident heart failure. JACC Cardiovasc Imaging 2020; 13: 2316–26. https://doi.org/10.1016/j.jcmg.2020.04.028

    Article  PubMed  Google Scholar 

  90. Tomlinson S, Scalia GM, Appadurai V, et al. Left atrial reservoir strain provides incremental value to left atrial volume index for evaluation of left ventricular filling pressure. Echocardiography 2021; 38: 1503–13. https://doi.org/10.1111/echo.15157

    Article  PubMed  Google Scholar 

  91. Stanton T, Leano R, Marwick TH. Prediction of all-cause mortality from global longitudinal speckle strain: comparison with ejection fraction and wall motion scoring. Circ Cardiovasc Imaging 2009; 2: 356–64. https://doi.org/10.1161/circimaging.109.862334

    Article  PubMed  Google Scholar 

  92. Cameli M, Righini FM, Lisi M, et al. Comparison of right versus left ventricular strain analysis as a predictor of outcome in patients with systolic heart failure referred for heart transplantation. Am J Cardiol 2013; 112: 1778-84. https://doi.org/10.1016/j.amjcard.2013.07.046

    Article  PubMed  Google Scholar 

  93. Park JJ, Park JB, Park JH, Cho GY. Global longitudinal strain to predict mortality in patients with acute heart failure. J Am Coll Cardiol 2018; 71: 1947–57. https://doi.org/10.1016/j.jacc.2018.02.064

    Article  PubMed  Google Scholar 

  94. Ting PC, Wu VC, Liao CC, et al. Preoperative right ventricular dysfunction indicates high vasoactive support needed after cardiac surgery. J Cardiothorac Vasc Anesth 2019; 33: 686–93. https://doi.org/10.1053/j.jvca.2018.07.048

    Article  PubMed  Google Scholar 

  95. Keller M, Heller T, Duerr MM, et al. Association of three-dimensional mesh-derived right ventricular strain with short-term outcomes in patients undergoing cardiac surgery. J Am Soc Echocardiogr 2022; 35: 408–18. https://doi.org/10.1016/j.echo.2021.11.008

    Article  PubMed  Google Scholar 

  96. Jia F, Chen A, Zhang D, Fang L, Chen W. Prognostic value of left atrial strain in heart failure: a systematic review and meta-analysis. Front Cardiovasc Med 2022; 9: 935103. https://doi.org/10.3389/fcvm.2022.935103

    Article  PubMed  PubMed Central  Google Scholar 

  97. Bhave NM, Visovatti SH, Kulick B, Kolias TJ, McLaughlin VV. Right atrial strain is predictive of clinical outcomes and invasive hemodynamic data in group 1 pulmonary arterial hypertension. Int J Cardiovasc Imaging 2017; 33: 847–55. https://doi.org/10.1007/s10554-017-1081-7

    Article  PubMed  PubMed Central  Google Scholar 

  98. Platz E, Hassanein AH, Shah A, Goldhaber SZ, Solomon SD. Regional right ventricular strain pattern in patients with acute pulmonary embolism. Echocardiography 2012; 29: 464–70. https://doi.org/10.1111/j.1540-8175.2011.01617.x

    Article  PubMed  Google Scholar 

  99. Mediratta A, Addetia K, Medvedofsky D, Gomberg-Maitland M, Mor-Avi V, Lang RM. Echocardiographic diagnosis of acute pulmonary embolism in patients with McConnell's Sign. Echocardiography 2016; 33: 696–702. https://doi.org/10.1111/echo.13142

    Article  PubMed  Google Scholar 

  100. Khan UA, Aurigemma GP, Tighe DA. Vector velocity imaging echocardiography to study the effects of submassive pulmonary embolism on the right atrium. Echocardiography 2018; 35: 204–10. https://doi.org/10.1111/echo.13753

    Article  PubMed  Google Scholar 

  101. Li AL, Zhai ZG, Zhai YN, Xie WM, Wan J, Tao XC. The value of speckle-tracking echocardiography in identifying right heart dysfunction in patients with chronic thromboembolic pulmonary hypertension. Int J Cardiovasc Imaging 2018; 34: 1895–904. https://doi.org/10.1007/s10554-018-1423-0

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lee K, Kwon O, Lee EJ, et al. Prognostic value of echocardiographic parameters for right ventricular function in patients with acute non-massive pulmonary embolism. Heart Vessels 2019; 34: 1187–95. https://doi.org/10.1007/s00380-019-01340-1

    Article  PubMed  Google Scholar 

  103. Trivedi SJ, Terluk AD, Kritharides L, et al. Right ventricular speckle tracking strain echocardiography in patients with acute pulmonary embolism. Int J Cardiovasc Imaging 2020; 36: 865–72. https://doi.org/10.1007/s10554-020-01779-8

    Article  PubMed  Google Scholar 

  104. Ye Z, Yang LT, Medina-Inojosa JR, et al. Multichamber strain characterization is a robust prognosticator for both bicuspid and tricuspid aortic stenosis. J Am Soc Echocardiogr 2022; 35: 956–65. https://doi.org/10.1016/j.echo.2022.05.010

    Article  PubMed  Google Scholar 

  105. Stassen J, Namazi F, van der Bijl P, et al. Left atrial reservoir function and outcomes in secondary mitral regurgitation. J Am Soc Echocardiogr 2022; 35: 477–85. https://doi.org/10.1016/j.echo.2022.01.007

    Article  PubMed  Google Scholar 

  106. Florescu DR, Muraru D, Florescu C, et al. Right heart chambers geometry and function in patients with the atrial and the ventricular phenotypes of functional tricuspid regurgitation. Eur Heart J Cardiovasc Imaging 2022; 23: 930–40. https://doi.org/10.1093/ehjci/jeab211

    Article  PubMed  Google Scholar 

  107. Medvedofsky D, Koifman E, Jarrett H, et al. Association of right ventricular longitudinal strain with mortality in patients undergoing transcatheter aortic valve replacement. J Am Soc Echocardiogr 2020; 33: 452–60. https://doi.org/10.1016/j.echo.2019.11.014

    Article  PubMed  Google Scholar 

  108. Badano LP, Kolias TJ, Muraru D, et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging 2018; 19: 591–600. https://doi.org/10.1093/ehjci/jey042

    Article  PubMed  Google Scholar 

  109. Blessberger H, Binder T. NON-invasive imaging: two dimensional speckle tracking echocardiography: basic principles. Heart 2010; 96: 716–22. https://doi.org/10.1136/hrt.2007.141002

    Article  PubMed  Google Scholar 

  110. Voigt JU, Cvijic M. 2- and 3-dimensional myocardial strain in cardiac health and disease. JACC Cardiovasc Imaging 2019; 12: 1849–63. https://doi.org/10.1016/j.jcmg.2019.01.044

    Article  PubMed  Google Scholar 

  111. Denault AY, Couture P, Vegas A, Buithieu J, Tardif JC. Transesophageal Echocardiography Multimedia Manual: A Perioperative Transcdiscplinary Approach, 2nd edition. New York: Informa Healthcare; 2011.

    Google Scholar 

  112. Phelan D, Collier P, Thavendiranathan P, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart 2012; 98: 1442–8. https://doi.org/10.1136/heartjnl-2012-302353

    Article  PubMed  Google Scholar 

  113. Phelan D, Thavendiranathan P, Popovic Z, et al. Application of a parametric display of two-dimensional speckle-tracking longitudinal strain to improve the etiologic diagnosis of mild to moderate left ventricular hypertrophy. J Am Soc Echocardiogr 2014; 27: 888–95. https://doi.org/10.1016/j.echo.2014.04.015

    Article  PubMed  Google Scholar 

  114. Pathan F, D'Elia N, Nolan MT, Marwick TH, Negishi K. Normal ranges of left atrial strain by speckle-tracking echocardiography: a systematic review and meta-analysis. J Am Soc Echocardiogr 2017; 30: 59–70. https://doi.org/10.1016/j.echo.2016.09.007

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Y. Denault MD, PhD, FRCPC.

Ethics declarations

Author contributions

All authors contributed to all aspects of the manuscript including conception and design, conception and drafting of the figures, as well as reviewing and editing of the manuscript draft.

Disclosures

André Y. Denault is a speaker and consultant for CAE Healthcare, Inc. and speaker for Edwards Lifesciences and Masimo. He received a research grant from Edwards Lifesciences (2019).

Funding statement

André Y. Denault is supported by the Montreal Heart Institute Foundation (Montreal, QC, Canada) and Richard I. Kaufman Endowment Fund in Anesthesia and Critical Care. The funding sources had no role in the design of the study and collection, analysis, and interpretation of data or in writing the manuscript.

Editorial responsibility

This submission was handled by Dr. Philip M. Jones, Deputy Editor-in-Chief, Canadian Journal of Anesthesia/Journal canadien d’anesthésie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is accompanied by an Editorial. Please see Can J Anesth 2024; https://doi.org/10.1007/s12630-024-02714-4.

Supplementary Information

Below is the link to the electronic supplementary material.

eVideo 1A Case 1. Normal 3D LVEF calculated at 56.8% in a 79-yr-old man with unstable angina and severe triple vessel disease scheduled for coronary artery bypass graft. EDV = end-diastolic volume; ESV = end-systolic volume; LVEF = left ventricular ejection fraction; SV = stroke volume (MP4 2093 KB)

eVideo 1B Case 1. Reduced LV GLS. The Avg Endo strain from the four-chamber, two-chamber and long-axis or three-chamber views were reduced with an Avg value −8.2% (normal −20%). A2C = apical two-chamber; A3C = apical three-chamber; A4C = apical four-chamber; Avg = average; Endo = endocardial; GLS = global longitudinal strain; HR = heart rate; LV = left ventricular (MP4 1174 KB)

eVideo 2A Case 2. ME4C view of a 77-yr-old man undergoing coronary revascularization. The right-sided chambers are contracting well based on the 2D imaging. The right ventricular FAC is normal, calculated at 36%. FAC = fractional area change; ME4C = midesophageal four-chamber (MP4 3696 KB)

eVideo 2B Case 2: Reduced right ventricular free wall strain longitudinal (MP4 1893 KB)

eVideo 3 Radial strain (MP4 2085 KB)

eVideo 4A Baseline right atrial strain. A4C = apical four-chamber; ED = end-diastole; LA = left atrial; RAScd = right atrial conduit strain; RASct = right atrial contraction strain; RASr = right atrial strain reservoir (MP4 1169 KB)

eVideo 4B Right atrial strain following inhaled prostacyclin and inhaled milrinone. ED = end-diastole; RAScd = right atrial conduit strain; RASct = right atrial contraction strain; RASr = right atrial strain reservoir (MP4 1222 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costescu, A., Riendeau Beaulac, G., Guensch, D.P. et al. Perioperative echocardiographic strain analysis: what anesthesiologists should know. Can J Anesth/J Can Anesth 71, 650–670 (2024). https://doi.org/10.1007/s12630-024-02713-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12630-024-02713-5

Keywords

Navigation