Skip to main content
Log in

Canadian tertiary care pediatric massive hemorrhage protocols: a survey and comprehensive national review

Protocoles canadiens de soins tertiaires pour les hémorragies massives en pédiatrie : un sondage et un examen national exhaustif

  • Reports of Original Investigations
  • Published:
Canadian Journal of Anesthesia/Journal canadien d'anesthésie Aims and scope Submit manuscript

Abstract

Purpose

Hemorrhage is the leading cause of pediatric death in trauma and cardiac arrest during surgery. Adult studies report improved patient outcomes using massive hemorrhage protocols (MHPs). Little is known about pediatric MHP adoption in Canada.

Methods

After waived research ethics approval, we conducted a survey of Canadian pediatric tertiary care hospitals to study MHP activations. Transfusion medicine directors provided hospital/patient demographic and MHP activation data. The authors extracted pediatric-specific MHP data from requested policy/procedure documents according to seven predefined MHP domains based on the literature. We also surveyed educational and audit tools. The analysis only included MHPs with pediatric-specific content.

Results

The survey included 18 sites (100% response rate). Only 13/18 hospitals had pediatric-specific MHP content: eight were dedicated pediatric hospitals, two were combined pediatric/obstetrical hospitals, and three were combined pediatric/adult hospitals. Trauma was the most common indication for MHP activation (54%), typically based on a specific blood volume anticipated/transfused over time (10/13 sites). Transport container content was variable. Plasma and platelets were usually not in the first container. There was little emphasis on balanced plasma/platelet to red-blood-cell ratios, and most sites (12/13) rapidly incorporated laboratory-guided goal-directed transfusion. Transfusion thresholds were consistent with recent guidelines. All protocols used tranexamic acid and eight sites used an audit tool.

Discussion/Conclusion

Pediatric MHP content was highly variable. Activation demographics suggest underuse in nontrauma settings. Our findings highlight the need for a consensus definition for pediatric massive hemorrhage, a validated pediatric MHP activation tool, and prospective assessment of blood component ratios. A national pediatric MHP activation repository would allow for quality improvement metrics.

Résumé

Objectif

L’hémorragie est la principale cause de décès pédiatrique dans les cas de traumatismes et les arrêts cardiaques pendant la chirurgie. Les études menées chez l’adulte font état d’une amélioration des devenirs pour les patient·es lors de l’utilisation de protocoles d’hémorragie massive (PHM). On ne connait que peu de choses quant à l’adoption des PHM pédiatriques au Canada.

Méthode

Après avoir été dispensés de l’approbation du comité d’éthique de la recherche, nous avons mené un sondage auprès des hôpitaux de soins tertiaires pédiatriques canadiens pour étudier les activations des PHM. Les directions responsables de la médecine transfusionnelle ont fourni des données démographiques sur les hôpitaux et la patientèle et sur l’activation des PHM. Nous avons extrait les données sur les PHM spécialement conçus pour les enfants à partir des documents de politiques et de procédures demandés selon sept domaines de PHM prédéfinis en nous fondant sur la littérature. Nous avons également examiné les outils éducatifs et de vérification. L’analyse n’a inclus que les PHM disposant d’un contenu spécifique à la pédiatrie.

Résultats

L’enquête comprenait 18 sites (taux de réponse de 100 %). Seuls 13/18 hôpitaux disposaient de contenu spécifique à la pédiatrie dans leurs PHM : huit étaient des hôpitaux pédiatriques dédiés, deux des hôpitaux pédiatriques/obstétricaux combinés, et trois des hôpitaux pédiatriques/adultes combinés. Le traumatisme était l’indication la plus fréquente d’activation d’un PHM (54 %), généralement fondé sur un volume sanguin spécifique anticipé/transfusé au fil du temps (10/13 sites). Le contenu du conteneur de transport était variable. Le plasma et les plaquettes n’étaient généralement inclus pas dans le premier récipient. Il n’y avait que peu d’emphase sur les ratios plasma/plaquettes et globules rouges équilibrés, et la plupart des sites (12/13) ont rapidement incorporé les protocoles de transfusion ciblée guidés par les tests sanguins de laboratoire. Les seuils de transfusion étaient conformes aux lignes directrices récentes. Tous les protocoles utilisaient de l’acide tranexamique et huit sites utilisaient un outil de vérification.

Discussion/Conclusion

Le contenu des PHM pédiatriques était très variable. Les données démographiques sur l’activation suggèrent une sous-utilisation dans les contextes non traumatiques. Nos résultats soulignent la nécessité d’une définition consensuelle de l’hémorragie massive pédiatrique, d’un outil d’activation pédiatrique validé du PHM et d’une évaluation prospective des ratios des composants sanguins. Un recueil national d’activation des PHM pédiatriques permettrait d’obtenir des mesures d’amélioration de la qualité.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karam O, Tucci M. Massive transfusion in children. Transfus Med Rev 2016; 30: 213–6. https://doi.org/10.1016/j.tmrv.2016.05.010

    Article  PubMed  Google Scholar 

  2. Bhananker SM, Ramamoorthy C, Geiduschek JM, et al. Anesthesia-related cardiac arrest in children: update from the pediatric perioperative cardiac arrest registry. Anesth Analg 2007; 105: 344–50. https://doi.org/10.1213/01.ane.0000268712.00756.dd

    Article  PubMed  Google Scholar 

  3. Livingston MH, Singh S, Merritt NH. Massive transfusion in paediatric and adolescent trauma patients: incidence, patient profile, and outcomes prior to a massive transfusion protocol. Injury 2014; 45: 1301–6. https://doi.org/10.1016/j.injury.2014.05.033

    Article  PubMed  Google Scholar 

  4. Como JJ, Dutton RP, Scalea TM, Edelman BB, Hess JR. Blood transfusion rates in the care of acute trauma. Transfusion 2004; 44: 809–13. https://doi.org/10.1111/j.1537-2995.2004.03409.x

    Article  PubMed  Google Scholar 

  5. Rossaint R, Afshari A, Bouillon B, et al. The European guideline on management of major bleeding and coagulopathy following trauma: sixth edition. Crit Care 2023; 27: 80. https://doi.org/10.1186/s13054-023-04327-7

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kamyszek RW, Leraas HJ, Reed C, et al. Massive transfusion in the pediatric population: a systematic review and summary of best-evidence practice strategies. J Trauma Acute Care Surg 2019; 86: 744–54. https://doi.org/10.1097/ta.0000000000002188

    Article  PubMed  Google Scholar 

  7. Callum JL, Yeh CH, Petrosoniak A, et al. A regional massive hemorrhage protocol developed through a modified Delphi technique. CMAJ Open 2019; 7: E546–61. https://doi.org/10.9778/cmajo.20190042

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chin V, Cope S, Yeh CH, et al. Massive hemorrhage protocol survey: marked variability and absent in one-third of hospitals in Ontario, Canada. Injury 2019; 50: 46–53. https://doi.org/10.1016/j.injury.2018.11.026

    Article  PubMed  Google Scholar 

  9. Horst J, Leonard JC, Vogel A, Jacobs R, Spinella PC. A survey of US and Canadian hospitals’ paediatric massive transfusion protocol policies. Transfus Med 2016; 26: 49–56. https://doi.org/10.1111/tme.12277

    Article  CAS  PubMed  Google Scholar 

  10. Thomasson RR, Yazer MH, Gorham JD, et al. International assessment of massive transfusion protocol contents and indications for activation. Transfusion 2019; 59: 1637–43. https://doi.org/10.1111/trf.15149

    Article  CAS  PubMed  Google Scholar 

  11. Ontario Regional Blood Coordinating Network. Provincial MHP toolkit. Available from URL: https://transfusionontario.org/en/category/massive-hemorrhage-protocol/toolkit/ (accessed July 2023).

  12. Maw G, Furyk C. Pediatric massive transfusion: a systematic review. Pediatr Emerg Care 2018; 34: 594–8. https://doi.org/10.1097/pec.0000000000001570

    Article  PubMed  Google Scholar 

  13. Evangelista ME, Gaffley M, Neff LP. Massive transfusion protocols for pediatric patients: current perspectives. J Blood Med 2020; 11: 163–72. https://doi.org/10.2147/jbm.s205132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tan GM, Murto K, Downey LA, Wilder MS, Goobie SM. Error traps in Pediatric patient blood management in the perioperative period. Paediatr Anaesth 2023; 33: 609–19. https://doi.org/10.1111/pan.14683

    Article  PubMed  Google Scholar 

  15. Dillman DA. Mail and Internet Surveys: The Tailored Design Method, 2nd ed. Hoboken: John Wiley & Sons, Inc; 2000.

    Google Scholar 

  16. Leonard JC, Josephson CD, Luther JF, et al. Life-threatening bleeding in children: a prospective observational study. Crit Care Med 2021; 49: 1943–54. https://doi.org/10.1097/ccm.0000000000005075

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cotton BA, Gunter OL, Isbell J, et al. Damage control hematology: the impact of a trauma exsanguination protocol on survival and blood product utilization. J Trauma 2008; 64: 1177–82. https://doi.org/10.1097/ta.0b013e31816c5c80

    Article  PubMed  Google Scholar 

  18. Cannon JW, Neff LP, Pidcoke HF, et al. The evolution of pediatric transfusion practice during combat operations 2001–2013. J Trauma Acute Care Surg 2018; 84: S69–76. https://doi.org/10.1097/ta.0000000000001869

    Article  PubMed  Google Scholar 

  19. Hardy JF, de Moerloose P, Samama CM, Members of the Group d'Intérêt en Hémostase Périopératoir. Massive transfusion and coagulopathy: pathophysiology and implications for clinical management. Can J Anesth 2004; 51: 293–310. https://doi.org/10.1007/bf03022251

    Article  PubMed  Google Scholar 

  20. Foster JC, Sappenfield JW, Smith RS, Kiley SP. Initiation and termination of massive transfusion protocols: current strategies and future prospects. Anesth Analg 2017; 125: 2045–55. https://doi.org/10.1213/ane.0000000000002436

    Article  PubMed  Google Scholar 

  21. Petrosoniak A, Pavenski K, da Luz LT, Callum J. Massive hemorrhage protocol: a practical approach to the bleeding trauma patient. Emerg Med Clin North Am 2023; 41: 51–69. https://doi.org/10.1016/j.emc.2022.09.010

    Article  PubMed  Google Scholar 

  22. Neff LP, Cannon JW, Morrison JJ, Edwards MJ, Spinella PC, Borgman MA. Clearly defining pediatric massive transfusion: cutting through the fog and friction with combat data. J Trauma Acute Care Surg 2015; 78: 22–9. https://doi.org/10.1097/ta.0000000000000488

    Article  PubMed  Google Scholar 

  23. Hanna K, Hamidi M, Anderson KT, et al. Pediatric resuscitation: weight-based packed red blood cell volume is a reliable predictor of mortality. J Trauma Acute Care Surg 2019; 87: 356–63. https://doi.org/10.1097/ta.0000000000002305

    Article  PubMed  Google Scholar 

  24. Rosenfeld E, Lau P, Zhang W, et al. Defining massive transfusion in civilian pediatric trauma. J Pediatr Surg 2019; 54: 975–9. https://doi.org/10.1016/j.jpedsurg.2019.01.029

    Article  PubMed  Google Scholar 

  25. Moren AM, Hamptom D, Diggs B, et al. Recursive partitioning identifies greater than 4 U of packed red blood cells per hour as an improved massive transfusion definition. J Trauma Acute Care Surg 2015; 79: 920–4. https://doi.org/10.1097/ta.0000000000000830

    Article  PubMed  PubMed Central  Google Scholar 

  26. Meyer DE, Cotton BA, Fox EE, et al. A comparison of resuscitation intensity and critical administration threshold in predicting early mortality among bleeding patients: a multicenter validation in 680 major transfusion patients. J Trauma Acute Care Surg 2018; 85: 691–6. https://doi.org/10.1097/ta.0000000000002020

    Article  PubMed  PubMed Central  Google Scholar 

  27. Avarello JT, Cantor RM. Pediatric major trauma: an approach to evaluation and management. Emerg Med Clin North Am 2007; 25: 803–36. https://doi.org/10.1016/j.emc.2007.06.013

    Article  PubMed  Google Scholar 

  28. Nystrup KB, Stensballe J, Bøttger M, Johansson PI, Ostrowski SR. Transfusion therapy in paediatric trauma patients: a review of the literature. Scand J Trauma Resusc Emerg Med 2015; 23: 21. https://doi.org/10.1186/s13049-015-0097-z

    Article  PubMed  PubMed Central  Google Scholar 

  29. Leeper CM, McKenna C, Gaines BA. Too little too late: hypotension and blood transfusion in the trauma bay are independent predictors of death in injured children. J Trauma Acute Care Surg 2018; 85: 674–8. https://doi.org/10.1097/ta.0000000000001823

    Article  PubMed  Google Scholar 

  30. Galvagno SM Jr, Nahmias JT, Young DA. Advanced Trauma Life Support® update 2019: management and applications for adults and special populations. Anesthesiol Clin 2019; 37: 13–32. https://doi.org/10.1016/j.anclin.2018.09.009

    Article  PubMed  Google Scholar 

  31. Phillips R, Acker SN, Shahi N, et al. The ABC-D score improves the sensitivity in predicting need for massive transfusion in pediatric trauma patients. J Pediatr Surg 2020; 55: 331–4. https://doi.org/10.1016/j.jpedsurg.2019.10.008

    Article  PubMed  Google Scholar 

  32. Borgman MA, Maegele M, Wade CE, Blackbourne LH, Spinella PC. Pediatric trauma BIG score: predicting mortality in children after military and civilian trauma. Pediatrics 2011; 127: e892–7. https://doi.org/10.1542/peds.2010-2439

    Article  PubMed  Google Scholar 

  33. Bjerkvig CK, Strandenes G, Eliassen HS, et al. “Blood failure” time to view blood as an organ: how oxygen debt contributes to blood failure and its implications for remote damage control resuscitation. Transfusion 2016; 56: S182–9. https://doi.org/10.1111/trf.13500

    Article  CAS  PubMed  Google Scholar 

  34. Valentine SL, Bembea MM, Muszynski JA, et al. Consensus recommendations for red blood cell transfusion practice in critically ill children from the pediatric critical care transfusion and anemia expertise initiative. Pediatr Crit Care Med 2018; 19: 884–98. https://doi.org/10.1097/pcc.0000000000001613

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tucci M, Crighton G, Goobie SM, et al. Plasma and platelet transfusion strategies in critically ill children following noncardiac surgery and critically ill children undergoing invasive procedures outside the operating room: from the Transfusion and Anemia EXpertise Initiative-Control/Avoidance of Bleeding. Pediatr Crit Care Med 2022; 23: E50–62. https://doi.org/10.1097/pcc.0000000000002858

    Article  PubMed  PubMed Central  Google Scholar 

  36. Russell R, Bauer DF, Goobie SM, et al. Plasma and platelet transfusion strategies in critically ill children following severe trauma, traumatic brain injury, and/or intracranial hemorrhage: from the Transfusion and Anemia EXpertise Initiative-Control/Avoidance of Bleeding. Pediatr Crit Care Med 2022; 23: E14–24. https://doi.org/10.1097/pcc.0000000000002855

    Article  PubMed  PubMed Central  Google Scholar 

  37. Spinella PC, Leonard JC, Marshall C, et al. Transfusion ratios and deficits in injured children with life-threatening bleeding. Pediatr Crit Care Med 2022; 23: 235–44. https://doi.org/10.1097/pcc.0000000000002907

    Article  PubMed  Google Scholar 

  38. Pommerening MJ, Goodman MD, Holcomb JB, et al. Clinical gestalt and the prediction of massive transfusion after trauma. Injury 2015; 46: 807–13. https://doi.org/10.1016/j.injury.2014.12.026

    Article  PubMed  PubMed Central  Google Scholar 

  39. Harrison E, Bolton P. Serious hazards of transfusion in children (SHOT). Paediatr Anaesth 2011; 21: 10–3. https://doi.org/10.1111/j.1460-9592.2010.03474.x

    Article  PubMed  Google Scholar 

  40. Vossoughi S, Perez G, Whitaker BI, Fung MK, Stotler B. Analysis of pediatric adverse reactions to transfusions. Transfusion 2018; 58: 60–9. https://doi.org/10.1111/trf.14359

    Article  PubMed  Google Scholar 

  41. Butler EK, Mills BM, Arbabi S, et al. Association of blood component ratios with 24-hour mortality in injured children receiving massive transfusion. Crit Care Med 2019; 47: 975–83. https://doi.org/10.1097/ccm.0000000000003708

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hardy JF, de Moerloose P, Samama CM. The coagulopathy of massive transfusion. Vox Sang 2005; 89: 123–7. https://doi.org/10.1111/j.1423-0410.2005.00678.x

    Article  PubMed  Google Scholar 

  43. Etchill EW, Myers SP, McDaniel LM, et al. Should all massively transfused patients be treated equally? An analysis of massive transfusion ratios in the nontrauma setting. Crit Care Med 2017; 45: 1311–6. https://doi.org/10.1097/ccm.0000000000002498

    Article  PubMed  Google Scholar 

  44. Doctor A, Cholette JM, Remy KE, et al. Recommendations on RBC transfusion in general critically ill children based on hemoglobin and/or physiologic thresholds from the pediatric critical care transfusion and anemia expertise initiative. Pediatr Crit Care Med 2018; 19: S98–113. https://doi.org/10.1097/pcc.0000000000001590

    Article  PubMed  PubMed Central  Google Scholar 

  45. CRASH-2 Trial Collaborators, Shakur H, Roberts I, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet 2010; 376: 23–32. https://doi.org/10.1016/s0140-6736(10)60835-5

    Article  Google Scholar 

  46. Kornelsen E, Kuppermann N, Nishijima D, et al. Effectiveness and safety of tranexamic acid in pediatric trauma: a systematic review and meta-analysis. Am J Emerg Med 2022; 55: 103–10. https://doi.org/10.1016/j.ajem.2022.01.069

    Article  PubMed  Google Scholar 

  47. Eckert MJ, Wertin TM, Tyner SD, Nelson DW, Izenberg S, Martin MJ. Tranexamic acid administration to pediatric trauma patients in a combat setting: the pediatric trauma and tranexamic acid study (PED-TRAX). J Trauma Acute Care Surg 2014; 77: 852–8. https://doi.org/10.1097/ta.0000000000000443

    Article  CAS  PubMed  Google Scholar 

  48. Goobie SM, Faraoni D. Tranexamic acid and perioperative bleeding in children: what do we still need to know? Curr Opin Anaesthesiol 2019; 32: 343–52. https://doi.org/10.1097/aco.0000000000000728

    Article  CAS  PubMed  Google Scholar 

  49. Spinella PC, Leonard JC, Gaines BA, et al. Use of antifibrinolytics in pediatric life-threatening hemorrhage. Crit Care Med 2022; 50: e382–92. https://doi.org/10.1097/ccm.0000000000005383

    Article  PubMed  Google Scholar 

  50. Leeper CM, Neal MD, McKenna C, Sperry JL, Gaines BA. Abnormalities in fibrinolysis at the time of admission are associated with deep vein thrombosis, mortality, and disability in a pediatric trauma population. J Trauma Acute Care Surg 2017; 82: 27–34. https://doi.org/10.1097/ta.0000000000001308

    Article  CAS  PubMed  Google Scholar 

  51. Wikkelsø A, Wetterslev J, Møller AM, Afshari A. Thromboelastography (TEG) or thromboelastometry (ROTEM) to monitor haemostatic treatment versus usual care in adults or children with bleeding. Cochrane Database Syst Rev 2016; 2016: CD007871. https://doi.org/10.1002/14651858.cd007871.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  52. Oswald E, Stalzer B, Heitz E, et al. Thromboelastometry (ROTEM) in children: age-related reference ranges and correlations with standard coagulation tests. Br J Anaesth 2010; 105: 827–35. https://doi.org/10.1093/bja/aeq258

    Article  CAS  PubMed  Google Scholar 

  53. Munlemvo DM, Tobias JD, Chenault KM, Naguib A. Prothrombin complex concentrates to treat coagulation disturbances: an overview with a focus on use in infants and children. Cardiol Res 2022; 13: 18–26. https://doi.org/10.14740/cr1342

    Article  PubMed  PubMed Central  Google Scholar 

  54. Solomon C, Gröner A, Ye J, Pendrak I. Safety of fibrinogen concentrate: analysis of more than 27 years of pharmacovigilance data. Thromb Haemost 2015; 113: 759–71. https://doi.org/10.1160/th14-06-0514

    Article  CAS  PubMed  Google Scholar 

  55. Grottke O, Levy JH. Prothrombin complex concentrates in trauma and perioperative bleeding. Anesthesiology 2015; 122: 923–31. https://doi.org/10.1097/aln.0000000000000608

    Article  PubMed  Google Scholar 

  56. Gammon RR, Al-Mozain N, Auron M, et al. Transfusion therapy of neonatal and paediatric patients: they are not just little adults. Transfus Med 2022; 32: 448–59. https://doi.org/10.1111/tme.12921

    Article  PubMed  Google Scholar 

  57. Noga T, Bruce AA, Blain H, Nahirniak S. Four-factor prothrombin complex concentrates in paediatric patients—a retrospective case series. Vox Sang 2016; 110: 253–7. https://doi.org/10.1111/vox.12353

    Article  CAS  PubMed  Google Scholar 

  58. Adams CB, Vollman KE, Leventhal EL, Acquisto NM. Emergent pediatric anticoagulation reversal using a 4-factor prothrombin complex concentrate. Am J Emerg Med 2016; 34: e1–2. https://doi.org/10.1016/j.ajem.2015.10.041

    Article  Google Scholar 

  59. Kochanek PM, Tasker RC, Carney N, et al. Guidelines for the management of pediatric severe traumatic brain injury, third edition: update of the Brain Trauma Foundation guidelines. Pediatr Crit Care Med 2019; 20: S1–82. https://doi.org/10.1097/pcc.0000000000001735

    Article  PubMed  Google Scholar 

  60. Dajak S, Čulić SC, Stefanović V, Lukačević J. Relationship between previous maternal transfusions and haemolytic disease of the foetus and newborn mediated by non-RhD antibodies. Blood Transfus 2013; 11: 528–32. https://doi.org/10.2450/2013.0193-12

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sanderson B, Coiera E, Asrianti L, Field J, Estcourt LJ, Wood EM. How well does your massive transfusion protocol perform? A scoping review of quality indicators. Blood Transfus 2020; 18: 423–33. https://doi.org/10.2450/2020.0082-20

    Article  PubMed  PubMed Central  Google Scholar 

  62. Muhly WT, Taylor E, Razavi C, et al. A systematic review of outcomes reported in pediatric perioperative research: a report from the Pediatric Perioperative Outcomes Group. Paediatr Anaesth 2020; 30: 1166–82. https://doi.org/10.1111/pan.13981

    Article  Google Scholar 

  63. Convertino VA, Johnson MC, Alarhayem A, et al. Compensatory reserve detects subclinical shock with more expeditious prediction for need of life-saving interventions compared to systolic blood pressure and blood lactate. Transfusion 2021; 61: S167–73. https://doi.org/10.1111/trf.16494

    Article  CAS  PubMed  Google Scholar 

  64. Downey LA, Goobie SM. Perioperative pediatric erythrocyte transfusions: incorporating hemoglobin thresholds and physiologic parameters in decision-making. Anesthesiology 2022; 137: 604–19. https://doi.org/10.1097/aln.0000000000004357

    Article  PubMed  Google Scholar 

Download references

Author contributions

Valérie Arsenault and Lani Lieberman contributed to all aspects of this manuscript, including study conception and design; acquisition, analysis, and interpretation of data; and reviewing/editing the article. Pegah Akbari contributed to the design and deployment of the survey and building the RedCap© database, analysis, and interpretation of data and reviewing/editing the article. Kimmo Murto contributed to most aspects of this manuscript, including study conception and design; analysis, and interpretation of data; and drafting the article.

Acknowledgement

Thank you to Johanna Spaans for reviewing and editing the manuscript.

Disclosures

Drs Lani Lieberman and Kimmo Murto have an ongoing noncommercial and unfunded relationship with the Ontario Regional Blood Coordinating Network (ORBCoN), an Ontario Ministry of Health funded organization, in the design, development, deployment and monitoring of a province-wide standardized massive hemorrhage protocol for children. Dr Valerie Arsenault and Pegah Akbari have no conflicts of interest.

Funding statement

There was no funding source.

Prior conference presentations

Preliminary study dated was presented by Valérie Arsenault at the virtual 2021 Canadian Society for Transfusion Medicine Annual Conference (13–15 May, Moncton, NB, Canada).

Editorial responsibility

This submission was handled by Dr. Vishal Uppal, Associate Editor, Canadian Journal of Anesthesia/Journal canadien d’anesthésie.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Kimmo Murto MD, FRCPC.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is accompanied by an Editorial. Please see Can J Anesth 2024; https://doi.org/10.1007/s12630-023-02640-x.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 444 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arsenault, V., Lieberman, L., Akbari, P. et al. Canadian tertiary care pediatric massive hemorrhage protocols: a survey and comprehensive national review. Can J Anesth/J Can Anesth 71, 453–464 (2024). https://doi.org/10.1007/s12630-023-02641-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12630-023-02641-w

Keywords

Navigation