Skip to main content

Effects of intraoperative dexmedetomidine infusion on renal function in elective living donor kidney transplantation: a randomized controlled trial

Effets d’une perfusion peropératoire de dexmédétomidine sur la fonction rénale dans la transplantation rénale élective issue de donneurs vivants : une étude randomisée contrôlée

Abstract

Purpose

Ischemia-reperfusion injury is inevitable during donor organ harvest and recipient allograft reperfusion in kidney transplantation, and affects graft outcomes. Dexmedetomidine, an α2-adrenoreceptor agonist, has renoprotective effects against ischemia-reperfusion injury. We investigated the effects of intraoperative dexmedetomidine infusion on renal function and the development of delayed graft function after elective living donor kidney transplantation in a randomized controlled trial.

Methods

A total of 104 patients were randomly assigned to receive either an intraoperative infusion of dexmedetomidine 0.4 μg·kg-1·hr-1 or 0.9% saline. The primary outcome was the serum creatinine level on postoperative day (POD) 7. Secondary outcomes were renal function and the degree of inflammation and included the following variables: serum creatinine level and estimated glomerular filtration rate up to six months; incidence of delayed graft function; and levels of serum cystatin C, plasma interleukin (IL)-1β, and IL-18 during the perioperative period.

Results

The mean (standard deviation) serum creatinine level on POD 7 was comparable between the groups (dexmedetomidine vs control: 1.11 [0.87] mg·dL-1 vs 1.06 [0.73] mg·dL-1; mean difference, 0.05; 95% confidence interval, -0.27 to 0.36; P = 0.77). Delayed graft function occurred in one patient in each group (odds ratio, 1.020; P > 0.99). There were no significant differences in the secondary outcomes between the groups (all P > 0.05).

Conclusions

Intraoperative dexmedetomidine infusion did not produce any beneficial effects on renal function or delayed graft function in patients undergoing elective living donor kidney transplantation.

Study registration

www.ClinicalTrials.gov (NCT03327389); registered 31 October 2017.

Résumé

Objectif

Les lésions d’ischémie-reperfusion sont inévitables lors du prélèvement d’organes du donneur et de la reperfusion de l’allogreffe chez le receveur pour une transplantation rénale, et affectent le devenir du greffon. La dexmédétomidine, un agoniste des adrénorécepteurs de type α2, a des effets néphroprotecteurs sur les lésions d’ischémie-reperfusion. Nous avons réalisé une étude randomisée contrôlée afin d’examiner les effets d’une perfusion peropératoire de dexmédétomidine sur la fonction rénale et l’apparition d’un retard de fonctionnement du greffon après une transplantation rénale élective issue de donneurs vivants.

Méthode

Au total, 104 patients ont été aléatoirement répartis pour recevoir une perfusion peropératoire de 0,4 μg·kg-1·r-1 de dexmédétomidine ou une solution saline à 0,9 %. Le critère d’évaluation principal était la créatininémie au jour postopératoire (JPO) 7. Les critères d’évaluation secondaires étaient la fonction rénale et le degré d’inflammation et comprenaient les variables suivantes : créatininémie et infiltration glomérulaire estimée jusqu’à six mois; incidence de retard de fonctionnement du greffon; et taux sériques de cystatine C, d’interleukine plasmatique (IL)-1β et d’IL-18 pendant la période périopératoire.

Résultats

Le taux moyen (écart type) de créatinine sérique au JPO 7 était comparable entre les groupes (dexmédétomidine vs témoin : 1,11 [0,87] mg·dL-1 vs 1,06 [0,73] mg·dL-1; différence moyenne, 0,05; intervalle de confiance à 95 %, -0,27 à 0,36; P = 0,77). Un patient de chaque groupe a subi un retard de fonctionnement du greffon (rapport de cotes, 1,020; P > 0.99). Aucune différence intergroupe significative n’a été observée en ce qui concerne les critères d’évaluation secondaires.

Conclusion

La perfusion peropératoire de dexmédétomidine n’a produit aucun effet bénéfique sur la fonction rénale ou le retard de fonctionnement du greffon chez les patients bénéficiant d’une transplantation rénale élective issue de donneur vivant.

Enregistrement de l’étude

www.ClinicalTrials.gov (NCT03327389); enregistrée le 31 octobre 2017.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Perico N, Cattaneo D, Sayegh MH, Remuzzi G. Delayed graft function in kidney transplantation. Lancet 2004; 364: 1814-27.

    Article  Google Scholar 

  2. Wu WK, Famure O, Li Y, Kim SJ. Delayed graft function and the risk of acute rejection in the modern era of kidney transplantation. Kidney Int 2015; 88: 851-8.

    CAS  Article  Google Scholar 

  3. Quiroga I, McShane P, Koo DD, et al. Major effects of delayed graft function and cold ischaemia time on renal allograft survival. Nephrol Dial Transplant 2006; 21: 1689-96.

    Article  Google Scholar 

  4. Meier-Kriesche HU, Schold JD, Srinivas TR, Kaplan B. Lack of improvement in renal allograft survival despite a marked decrease in acute rejection rates over the most recent era. Am J Transplant 2004; 4: 378-83.

    Article  Google Scholar 

  5. Land WG. Emerging role of innate immunity in organ transplantation part II: potential of damage-associated molecular patterns to generate immunostimulatory dendritic cells. Transplant Rev (Orlando) 2012; 26: 73-87.

    Article  Google Scholar 

  6. Toldo S, Quader M, Salloum FN, Mezzaroma E, Abbate A. Targeting the innate immune response to improve cardiac graft recovery after heart transplantation: implications for the donation after cardiac death. Int J Mol Sci 2016; DOI: https://doi.org/10.3390/ijms17060958.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Minutoli L, Puzzolo D, Rinaldi M, et al. ROS-mediated NLRP3 Inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion injury. Oxid Med Cell Longev 2016; DOI: https://doi.org/10.1155/2016/2183026.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Darisipudi MN, Thomasova D, Mulay SR, et al. Uromodulin triggers IL-1beta-dependent innate immunity via the NLRP3 inflammasome. J Am Soc Nephrol 2012; 23: 1783-9.

    CAS  Article  Google Scholar 

  9. Dessing MC, Kers J, Damman J, Navis GJ, Florquin S, Leemans JC. Donor and recipient genetic variants in NLRP3 associate with early acute rejection following kidney transplantation. Sci Rep 2016; DOI: https://doi.org/10.1038/srep36315.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tschopp J, Schroder K. NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 2010; 10: 210-5.

    CAS  Article  Google Scholar 

  11. Hall JE, Uhrich TD, Barney JA, Arain SR, Ebert TJ. Sedative, amnestic, and analgesic properties of small-dose dexmedetomidine infusions. Anesth Analg 2000; 90: 699-705.

    CAS  Article  Google Scholar 

  12. Cho JS, Shim JK, Soh S, Kim MK, Kwak YL. Perioperative dexmedetomidine reduces the incidence and severity of acute kidney injury following valvular heart surgery. Kidney Int 2016; 89: 693-700.

    CAS  Article  Google Scholar 

  13. Soh S, Shim JK, Song JW, Bae JC, Kwak YL. Effect of dexmedetomidine on acute kidney injury after aortic surgery: a single-centre, placebo-controlled, randomised controlled trial. Br J Anaesth 2020; 124: P386-94.

    Article  Google Scholar 

  14. Sugita S, Okabe T, Sakamoto A. Continuous infusion of dexmedetomidine improves renal ischemia-reperfusion injury in rat kidney. J Nippon Med Sch 2013; 80: 131-9.

    CAS  Article  Google Scholar 

  15. Gu J, Sun P, Zhao H, et al. Dexmedetomidine provides renoprotection against ischemia-reperfusion injury in mice. Crit Care 2011; DOI: https://doi.org/10.1186/cc10283.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yang T, Feng X, Zhao Y, et al. Dexmedetomidine enhances autophagy via alpha2-AR/AMPK/mTOR pathway to inhibit the activation of NLRP3 inflammasome and subsequently alleviates lipopolysaccharide-induced acute kidney injury. Front Pharmacol 2020; DOI: https://doi.org/10.3389/fphar.2020.00790.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li Y, Pan Y, Gao L, et al. Dexmedetomidine attenuates pancreatic injury and inflammatory response in mice with pancreatitis by possible reduction of NLRP3 activation and up-regulation of NET expression. Biochem Biophys Res Commun 2018; 495: 2439-47.

    CAS  Article  Google Scholar 

  18. Cooper JE, Wiseman AC. Acute kidney injury in kidney transplantation. Curr Opin Nephrol Hypertens 2013; 22: 698-703.

    Article  Google Scholar 

  19. Goldberg RJ, Weng FL, Kandula P. Acute and chronic allograft dysfunction in kidney transplant recipients. Med Clin North Am 2016; 100: 487-503.

    Article  Google Scholar 

  20. Section 2: AKI Definition. Kidney Int Suppl (2011) 2012;2:19–36.

  21. Xu H, Aibiki M, Seki K, Ogura S, Ogli K. Effects of dexmedetomidine, an alpha2-adrenoceptor agonist, on renal sympathetic nerve activity, blood pressure, heart rate and central venous pressure in urethane-anesthetized rabbits. J Auton Nerv Syst 1998; 71: 48-54.

    CAS  Article  Google Scholar 

  22. Villela NR, do Nascimento Junior P, de Carvalho LR, Teixeira A. Effects of dexmedetomidine on renal system and on vasopressin plasma levels. Experimental study in dogs (Portuguese). Rev Bras Anestesiol 2005; 55: 429-40.

    Article  Google Scholar 

  23. Lempiainen J, Finckenberg P, Mervaala EE, et al. Dexmedetomidine preconditioning ameliorates kidney ischemia-reperfusion injury. Pharmacol Res Perspect 2014; DOI: https://doi.org/10.1002/prp2.45.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Balkanay OO, Goksedef D, Omeroglu SN, Ipek G. The dose-related effects of dexmedetomidine on renal functions and serum neutrophil gelatinase-associated lipocalin values after coronary artery bypass grafting: a randomized, triple-blind, placebo-controlled study. Interact Cardiovasc Thorac Surg 2015; 20: 209-14.

    Article  Google Scholar 

  25. Bayram A, Esmaoglu A, Akin A, et al. The effects of intraoperative infusion of dexmedetomidine on early renal function after percutaneous nephrolithotomy. Acta Anaesthesiol Scand 2011; 55: 539-44.

    CAS  Article  Google Scholar 

  26. Moon T, Tsai JY, Vachhani S, et al. The use of intraoperative dexmedetomidine is not associated with a reduction in acute kidney injury after lung cancer surgery. J Cardiothorac Vasc Anesth 2016; 30: 51-5.

    CAS  Article  Google Scholar 

  27. Salah M, El-Tawil T, Nasr S, Nosser T. Does dexmedetomidine affect renal outcome in patients with renal impairment undergoing CABG? Egypt J Cardiothorac Anesth 2013; 7: 7-12.

    Google Scholar 

  28. De Wolf AM, Fragen RJ, Avram MJ, Fitzgerald PC, Rahimi-Danesh F. The pharmacokinetics of dexmedetomidine in volunteers with severe renal impairment. Anesth Analg 2001; 93: 1205-9.

    Article  Google Scholar 

  29. Fayed NA, Sayed EI, Saleh SM, Ehsan NA, Elfert AY. Effect of dexmedetomidine on hepatic ischemia-reperfusion injury in the setting of adult living donor liver transplantation. Clin Transplant 2016; 30: 470-82.

    CAS  Article  Google Scholar 

  30. Kosieradzki M, Rowiński W. Ischemia/reperfusion injury in kidney transplantation: mechanisms and prevention. Transplant Proc 2008; 3279-88.

  31. Lafrance JP, Djurdjev O, Levin A. Incidence and outcomes of acute kidney injury in a referred chronic kidney disease cohort. Nephrol Dial Transplant 2010; 25: 2203-9.

    Article  Google Scholar 

  32. Ji F, Li Z, Young JN, Yeranossian A, Liu H. Post-bypass dexmedetomidine use and postoperative acute kidney injury in patients undergoing cardiac surgery with cardiopulmonary bypass. PLoS One 2013; DOI: https://doi.org/10.1371/journal.pone.0077446.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hafer C, Becker T, Kielstein JT, et al. High-dose erythropoietin has no effect on short- or long-term graft function following deceased donor kidney transplantation. Kidney Int 2012; 81: 314-20.

    CAS  Article  Google Scholar 

  34. Tie HT, Luo MZ, Lin D, Zhang M, Wan JY, Wu QC. Erythropoietin administration for prevention of cardiac surgery-associated acute kidney injury: a meta-analysis of randomized controlled trials. Eur J Cardiothorac Surg 2015; 48: 32-9.

    Article  Google Scholar 

  35. Anders HJ, Muruve DA. The inflammasomes in kidney disease. J Am Soc Nephrol 2011; 22: 1007-18.

    CAS  Article  Google Scholar 

  36. Vilaysane A, Chun J, Seamone ME, et al. The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J Am Soc Nephrol 2010; 21: 1732-44.

    CAS  Article  Google Scholar 

  37. Granata S, Masola V, Zoratti E, et al. NLRP3 inflammasome activation in dialyzed chronic kidney disease patients. PLoS One 2015; DOI: https://doi.org/10.1371/journal.pone.0122272.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lezaic V, Dajak M, Radivojevic D, Ristic S, Marinkovic J. Cystatin C and serum creatinine as predictors of kidney graft outcome. Int Urol Nephrol 2014; 46: 1447-54.

    CAS  Article  Google Scholar 

  39. Pascual J, Marcén R, Zamora J, et al. Very early serum creatinine as a surrogate marker for graft survival beyond 10 years. J Nephrol 2009; 22: 90-8.

    CAS  PubMed  Google Scholar 

  40. Zhai M, Kang F, Han M, Huang X, Li J. The effect of dexmedetomidine on renal function in patients undergoing cardiac valve replacement under cardiopulmonary bypass: a double-blind randomized controlled trial. J Clin Anesth 2017; 40: 33-8.

    CAS  Article  Google Scholar 

  41. Weerink MA, Struys MM, Hannivoort LN, Barends CR, Absalom AR, Colin P. Clinical pharmacokinetics and pharmacodynamics of dexmedetomidine. Clin Pharmacokinet 2017; 56: 893-913.

    CAS  Article  Google Scholar 

Download references

Author contributions

Conceptualization: Jin Ha Park, Bon-Nyeo Koo, Min-Soo Kim, and Young-Lan Kwak. Data curation: Jin Ha Park, Bon-Nyeo Koo, and Young-Lan Kwak. Project administration: Jin Ha Park, Bon-Nyeo Koo, Min-Soo Kim, and Young-Lan Kwak. Methodology: Jin Ha Park, Bon-Nyeo Koo, Dongkwan Shin, and Young-Lan Kwak. Investigation and formal analysis: Jin Ha Park, Bon-Nyeo Koo, and Young-Lan Kwak. Writing original draft: Jin Ha Park, Bon-Nyeo Koo, Min-Soo Kim, and Young-Lan Kwak. Writing review and editing: Jin Ha Park, Bon-Nyeo Koo, Min-Soo Kim, Dongkwan Shin, and Young-Lan Kwak.

Acknowledgement

This study was presented in part as an abstract at the 97th Annual Scientific Meeting of the Korean Society of Anaesthesiologists, Incheon, South Korea, Nov 5-7, 2020.

Disclosures

None.

Funding statement

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Government of the Republic of Korea (Ministry of Science and ICT) (NRF-2017R1C1B5017937).

Editorial responsibility

This submission was handled by Dr. Stephan K.W. Schwarz, Editor-in-Chief, Canadian Journal of Anesthesia/Journal canadien d’anesthésie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Lan Kwak MD, PhD.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 170 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, J.H., Koo, BN., Kim, MS. et al. Effects of intraoperative dexmedetomidine infusion on renal function in elective living donor kidney transplantation: a randomized controlled trial. Can J Anesth/J Can Anesth 69, 448–459 (2022). https://doi.org/10.1007/s12630-021-02173-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12630-021-02173-1

Keywords

  • biomarkers
  • delayed graft function
  • dexmedetomidine
  • kidney transplantation
  • renal function