Advertisement

Manual volume delivery via Frova Intubating Introducer: a bench research study

  • Preeti Dewan
  • James Taylor
  • Vit Gunka
  • Arianne Albert
  • Simon MasseyEmail author
Reports of Original Investigations

Abstract

Purpose

Oxygen delivery through a Frova Intubating Introducer may be life-saving, and gas flow characteristics through this device have been described. Nevertheless, the feasibility of using a self-inflating resuscitation bag to deliver air or oxygen through this device has not been assessed. We compared volumes of air delivered and peak pressures generated with normal and maximal bimanual compression of a self-inflating resuscitation bag connected to a 70 cm Frova Intubating Introducer.

Methods

In this bench research study, the proximal end of the 14-F Frova Intubating Introducer was connected to the self-inflating resuscitation bag, and the distal end was connected to a flow analyzer fitted with an adult test lung. Thirty-five anesthesia health care providers (staff/trainees) squeezed the self-inflating resuscitation bag with three normal and three maximal bimanual compressions. Endpoints of interest included the delivered volume of air and generated peak pressure.

Results

Normal bimanual compression resulted in a smaller mean (standard deviation) volume of air and peak pressure compared with maximal bimanual compression [554 (131) vs 955 mL (121); mean difference − 400.4; 95% confidence interval [CI], − 441.8 to − 359.0; P < 0.001; and 22.0 (3.4) vs 41.8 cmH2O (13.3); mean difference − 19.7; 95% CI, − 23.5 to − 15.9; P < 0.001, respectively].

Conclusion

Clinically useful, life-sustaining volumes of air can be delivered using normal and maximal bimanual compression of a self-inflating resuscitation bag connected to a 70 cm Frova Intubating Introducer.

Trial registration

www.clinicaltrials.gov (NCT02786355); registered 27 January, 2016.

Administration manuelle d’un volume d’air au moyen de l’introducteur pour intubation Frova: projet de recherche en laboratoire

Résumé

Objectif

L’administration d’oxygène au travers d’un introducteur (bougie) Frova pour intubation peut sauver une vie et les caractéristiques du débit de gaz à travers ce dispositif ont été décrites précédemment. Néanmoins, la faisabilité de l’utilisation d’un ballon de réanimation pour administrer de l’air ou de l’oxygène à travers ce dispositif n’a pas été évaluée. Nous avons comparé des volumes d’air délivrés et les pressions maximales générées avec une compression bimanuelle normale ou maximale d’un ballon de réanimation autogonflant relié à un introducteur Frova pour intubation de 70 cm.

Méthodes

Dans cette étude expérimentale, l’extrémité proximale de l’introducteur Frova 14F pour intubation a été connectée au ballon de réanimation autogonflant et son extrémité distale a été connectée à un analyseur de débit adapté à un poumon adulte artificiel. Trente-cinq prestataires d’anesthésie (patrons/résidents) ont comprimé le ballon de réanimation avec trois compressions bimanuelles normales et trois compressions maximum. Les critères d’évaluation ont inclus le volume d’air délivré et la pression maximum générée.

Résultats

La compression bimanuelle normale a fourni un volume d’air moyen (ET) et une pression maximum moyenne (ET) inférieurs à la compression bimanuelle maximum (554 [131] contre 955 mL [121]; différence des moyennes, -400,4; intervalle de confiance [IC] à 95 % : –441,8 à − 359,0; P < 0,001; et 22,0 [3,4] contre 41,8 cmH2O [13,3]; différence des moyennes, –19,7; IC à 95 % : − 23,5 à − 15,9; P < 0,001).

Conclusion

Des volumes d’air cliniquement utiles pour le maintien en vie peuvent être administrés par compression bimanuelle normale et maximum d’un ballon de réanimation autogonflant connecté à un introducteur Frova pour réanimation de 70 cm.

Enregistrement de l’essai clinique

www.ClinicalTrials.gov (NCT02786355); enregistré le 27 janvier 2016.

Notes

Conflicts of interest

None declared.

Editorial responsibility

This submission was handled by Dr. Steven Backman, Associate Editor, Canadian Journal of Anesthesia.

Author contributions

Preeti Dewan helped design and conduct the study and write the manuscript. James Taylor helped analyze and interpret the data and write the manuscript. Vit Gunka helped conduct the study and write the manuscript. Arianne Albert helped design the study, analyze the results, and write the manuscript. Simon Massey helped conceive the study, design the study, conduct the study, review the analysis, and write the manuscript.

Funding

None.

References

  1. 1.
    Law JA, Broemling N, Cooper RM, et al. The difficult airway with recommendations for management-part1-difficult tracheal intubation encountered in an unconscious/induced patient. Can J Anesth 2013; 60: 1089-118.CrossRefGoogle Scholar
  2. 2.
    Apfelbaum JL, Hagberg CA, Caplan RA, et al. Practice guidelines for management of the difficult airway: an updated report by the American Society of Anesthesiologists Task Force on Management of the Difficult Airway. Anesthesiology 2013; 118: 251-70.CrossRefGoogle Scholar
  3. 3.
    Frerk C, Mitchell VS, McNarry AF, et al. Difficult Airway Society 2015 guidelines for management of unanticipated difficult intubation in adults. Br J Anaesth 2015; 115: 827-48.CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Heard A, Dinsmore J, Douglas S, Lacquiere D. Plan D: cannula first, or scalpel only? Br J Anaesth 2016; 177: 533-5.CrossRefGoogle Scholar
  5. 5.
    YanHong R, Ihra GC, Gore C. Determination of gas flow through airway exchange catheters: measured and calculated values and dependence on pressure and entrainment. Anaesthesia 2015; 70: 1073-8.CrossRefGoogle Scholar
  6. 6.
    Fox J. Applied Regression and Generalized Linear Models. 3rd ed. LA: Sage Publications Inc.; 2015 .Google Scholar
  7. 7.
    Sasano N, Tanaka A, Muramatsu A, et al. Tidal volume and airway pressure under percutaneous transtracheal ventilation without a jet ventilator: comparison of high-flow oxygen ventilation and manual ventilation in complete and incomplete upper airway obstruction models. J Anesth 2014; 28: 341-6.CrossRefGoogle Scholar
  8. 8.
    Acute Respiratory Distress Syndrome Network; Brower RG, Matthay MA, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342: 1301-8.Google Scholar
  9. 9.
    Kilpatrick B, Slinger P. Lung protective strategies in anaesthesia. Br J Anaesth 2010; 105(Suppl 1): i108-16.CrossRefGoogle Scholar
  10. 10.
    Gajic O, Frutos-Vivar F, Esteban A, Hubmayr RD, Anzueto A. Ventilator settings as a risk factor for acute respiratory distress syndrome in mechanically ventilated patients. Intensive Care Med 2005; 31: 922-6.CrossRefGoogle Scholar
  11. 11.
    Hamaekers A, Borg PA, Enk D. Ventrain: an ejector ventilator for emergency use. Br J Anaesth 2012; 108: 1017-21.CrossRefGoogle Scholar
  12. 12.
    de Wolf MW, Gottschall R, Preussler NP, Paxian M, Enk D. Emergency ventilation with the Ventrain® through an airway exchange catheter in a porcine model of complete upper airway obstruction. Can J Anesth 2017; 64: 37-44.CrossRefGoogle Scholar
  13. 13.
    Moore SM, Johnson JL, Haenel JB. Mechanical ventilation. In: Harken A, Moore E, editors. Abernathy’s Surgical Secrets. 7th ed. Philadelphia: Elsevier Science Publishing Company Inc.; 2017. p. 23-9.Google Scholar

Copyright information

© Canadian Anesthesiologists' Society 2019

Authors and Affiliations

  • Preeti Dewan
    • 1
  • James Taylor
    • 2
  • Vit Gunka
    • 3
  • Arianne Albert
    • 4
  • Simon Massey
    • 3
    Email author
  1. 1.Anaesthesia DepartmentMilton Keynes University Hospital NHS TrustMilton KeynesUK
  2. 2.Department of AnesthesiaBC Women’s HospitalVancouverCanada
  3. 3.Department of Anesthesiology, Pharmacology & TherapeuticsUniversity of British ColumbiaVancouverCanada
  4. 4.Women’s Health Research InstituteProvincial Health Services AuthorityVancouverCanada

Personalised recommendations