Advertisement

Intensity of care and withdrawal of life-sustaining therapies in severe traumatic brain injury patients: a post-hoc analysis of a multicentre retrospective cohort study

  • Peter R. A. Gerges
  • Lynne Moore
  • Caroline Léger
  • François Lauzier
  • Michèle Shemilt
  • Ryan Zarychanski
  • Damon C. Scales
  • Karen E. A. Burns
  • Francis Bernard
  • David Zygun
  • Xavier Neveu
  • Alexis F. Turgeon
  • Canadian Critical Care Trials Group
Reports of Original Investigations

Abstract

Purpose

The intensity of care provided to critically ill patients has been shown to be associated with mortality. In patients with traumatic brain injury (TBI), specialized neurocritical care is often required, but whether it affects clinically significant outcomes is unknown. We aimed to determine the association of the intensity of care on mortality and the incidence of withdrawal of life-sustaining therapies in critically ill patients with severe TBI.

Methods

We conducted a post hoc analysis of a multicentre retrospective cohort study of critically ill adult patients with severe TBI. We defined the intensity of care as a daily cumulative sum of interventions during the intensive care unit stay. Our outcome measures were all-cause hospital mortality and the incidence of withdrawal of life-sustaining therapies.

Results

Seven hundred sixteen severe TBI patients were included in our study. Most were male (77%) with a mean (standard deviation) age of 42 (20.5) yr and a median [interquartile range] Glasgow Coma Scale score of 3 [3-6]. Our results showed an association between the intensity of care and mortality (hazard ratio [HR], 0.69; 95% confidence interval [CI], 0.63 to 0.74) and the incidence of withdrawal of life-sustaining therapy (HR, 0.73; 95% CI, 0.67 to 0.79).

Conclusion

In general, more intense care was associated with fewer deaths and a lower incidence of withdrawal of life-sustaining therapies in critically ill patients with severe TBI.

Intensité de soins et retrait de maintien des fonctions vitales chez des patients ayant subi un traumatisme craniocérébral grave : une analyse post-hoc d’une étude de cohorte multicentrique rétrospective

Résumé

Objectif

L’intensité des soins fournis à des patients dans un état critique est associée à la mortalité. Chez des patients ayant subi un traumatisme craniocérébral (TCC), des soins intensifs neurologiques spécialisés sont souvent nécessaires, mais on ignore s’ils ont un impact cliniquement significatif sur le devenir de ces patients. Nous avons cherché à déterminer l’association entre, d’une part, l’intensité des soins et, d’autre part, la mortalité et l’incidence du retrait des thérapies de maintien des fonctions vitales chez des patients dans un état critique suivant un TCC.

Méthodes

Nous avons réalisé une analyse post hoc d’une étude de cohorte multicentrique rétrospective chez des patients dans un état critique suivant un TCC grave. Nous avons défini l’intensité des soins par la somme cumulée journalière des interventions au cours du séjour en unité de soins intensifs. Nos intensifs d’évaluation étaient la mortalité hospitalière, toutes causes confondues, et l’incidence du retrait des thérapies de maintien des fonctions vitales.

Résultats

Sept cent seize patients atteints de TCC grave ont été inclus dans notre étude. La plupart étaient des hommes (77 %) d’un âge moyen (écart-type) de 42 (20,5) ans et ayant un score de Glasgow pour le coma (Glasgow coma scale) médian [écarts interquartiles] de 3 [3 à 6]. Nos résultats ont montré une association entre l’intensité des soins et la mortalité (rapport de risque [RR] : 0,69; intervalle de confiance [IC] à 95 % : 0,63 à 0,74) et l’incidence du retrait des thérapies de maintien des fonctions vitales (RR : 0,73; IC à 95 % : 0,67 à 0,79).

Conclusion

D’une manière générale, des soins plus intenses ont été associés à moins de décès et à une plus faible incidence du retrait des thérapies de maintien des fonctions vitales chez des patients dans un état critique suivant un TCC grave.

Notes

Acknowledgements

The authors thank Frédéric Morin, David Simonyan, Mohana Ratnapalan, Stephanie Todd, and John Harlock for their help in data acquisition. The authors are grateful to the Grants and Manuscripts review committee of the Canadian Critical Care Trials Group, and more specifically to Dr. Lauralyn McIntyre, for the review and critical appraisal of the manuscript.

Disclaimer

The views expressed in the submitted article are the authors’ views and are not an official position of the institutions or funders.

Conflicts of interest

None declared.

Editorial responsibility

This submission was handled by Dr. Philip M. Jones, Associate Editor, Canadian Journal of Anesthesia.

Author contributions

Peter R. A. Gerges, Lynne Moore, François Lauzier, Ryan Zarychanski, and Alexis F. Turgeon were involved in conception and design. Peter R. A. Gerges, Lynne Moore, Xavier Neveu, Michèle Shemilt, and Alexis F. Turgeon were involved in the acquisition and statistical analysis. Peter R. A. Gerges, Caroline Léger, Michèle Shemilt, and Alexis F. Turgeon drafted the manuscript. All authors were involved in the interpretation of the data, revising the manuscript, and approval of the final version.

Funding

This work was supported in part by the Foundation of the Centre hospitalier affilié universitaire de Québec (CHA). Drs. Moore and Lauzier are recipients of a research career award from the Fonds de la Recherche du Québec – Santé (FRQS). Dr. Zarychanski was a recipient of a CIHR New Investigator award. Dr. Turgeon is the Canada Research Chair in Critical Care Neurology and Trauma.

Supplementary material

12630_2018_1171_MOESM1_ESM.pdf (46 kb)
Supplementary material 1 (PDF 46 kb)

References

  1. 1.
    Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil 2006; 21: 375-8.PubMedCrossRefGoogle Scholar
  2. 2.
    Brain Injury Canada. Brain injury can happen to anyone. Available from URL: https://www.braininjurycanada.ca/wp-content/uploads/2014/07/Brain-Injury-Can-Happen-to-Anyone.pdf (accessed April 2018).
  3. 3.
    Rosenfeld JV, Maas AI, Bragge P, Morganti-Kossmann MC, Manley GT, Gruen RL. Early management of severe traumatic brain injury. Lancet 2012; 380: 1088-98.PubMedCrossRefGoogle Scholar
  4. 4.
    Jennett B, Teasdale G, Galbraith S, et al. Severe head injuries in three countries. J Neurol Neurosurg Psychiatry 1977; 40: 291-8.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Foulkes MA, Eisenberg HM, Jane JA, Marmarou A. Marshall LF; Traumatic Coma Data Bank Research Group. The traumatic coma data bank: design, methods, and baseline characteristics. J Neurosurg 1991; 75: S8-13.CrossRefGoogle Scholar
  6. 6.
    Murray LS, Teasdale GM, Murray GD, Miller DJ, Pickard JD, Shaw MD. Head injuries in four British neurosurgical centres. Br J Neurosurg 1999; 13: 564-9.PubMedCrossRefGoogle Scholar
  7. 7.
    Murray GD, Teasdale GM, Braakman R, et al. The European Brain Injury Consortium survey of head injuries. Acta Neurochir (Wien) 1999; 141: 223-36.CrossRefGoogle Scholar
  8. 8.
    Majdan M, Steyerberg EW, Nieboer D, Mauritz W, Rusnak M, Lingsma HF. Glasgow coma scale motor score and pupillary reaction to predict six-month mortality in patients with traumatic brain injury: comparison of field and admission assessment. J Neurotrauma 2015; 32: 101-8.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Myburgh JA, Cooper DJ, Finfer SR, et al. Epidemiology and 12-month outcomes from traumatic brain injury in Australia and New Zealand. J Trauma 2008; 64: 854-62.PubMedCrossRefGoogle Scholar
  10. 10.
    Ng I, Lee KK, Lim JH, Wong HB, Yan XY. Investigating gender differences in outcome following severe traumatic brain injury in a predominantly Asian population. Br J Neurosurg 2006; 20: 73-8.PubMedCrossRefGoogle Scholar
  11. 11.
    Andriessen TM, Horn J, Franschman G, et al. Epidemiology, severity classification, and outcome of moderate and severe traumatic brain injury: a prospective multicenter study. J Neurotrauma 2011; 28: 2019-31.PubMedCrossRefGoogle Scholar
  12. 12.
    Chen YC, Lin SF, Liu CJ, Jiang DD, Yang PC, Chang SC. Risk factors for ICU mortality in critically ill patients. J Formos Med Assoc 2001; 100: 656-61.PubMedGoogle Scholar
  13. 13.
    Kiphuth IC, Schellinger PD, Kohrmann M, et al. Predictors for good functional outcome after neurocritical care. Crit Care 2010; 14: R136.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Shore PM, Hand LL, Roy L, Trivedi P, Kochanek PM, Adelson PD. Reliability and validity of the Pediatric Intensity Level of Therapy (PILOT) scale: a measure of the use of intracranial pressure-directed therapies. Crit Care Med 2006; 34: 1981-7.PubMedCrossRefGoogle Scholar
  15. 15.
    Stein SC, Georgoff P, Meghan S, Mirza KL, El Falaky OM. Relationship of aggressive monitoring and treatment to improved outcomes in severe traumatic brain injury. J Neurosurg 2010; 112: 1105-12.PubMedCrossRefGoogle Scholar
  16. 16.
    Turgeon AF, Lauzier F, Simard JF, et al. Mortality associated with withdrawal of life-sustaining therapy for patients with severe traumatic brain injury: a Canadian multicentre cohort study. CMAJ 2011; 183: 1581-8.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Cote N, Turgeon AF, Lauzier F, et al. Factors associated with the withdrawal of life-sustaining therapies in patients with severe traumatic brain injury: a multicenter cohort study. Neurocrit Care 2013; 18: 154-60.PubMedCrossRefGoogle Scholar
  18. 18.
    Carlin BP, Hodges JS. Hierarchical proportional hazards regression models for highly stratified data. Biometrics 1999; 55: 1162-70.PubMedCrossRefGoogle Scholar
  19. 19.
    Austin PC. A Tutorial on multilevel survival analysis: methods, models and applications. Int Stat Rev 2017; 85: 185-203.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 1999; 94: 496-509.CrossRefGoogle Scholar
  21. 21.
    Therneau TM. Extending the Cox Model. Rochester, Minnesota: Mayo Clinic. Biomedical Statistics and Informatics; 1996: report No. 58.Google Scholar
  22. 22.
    Austin PC, Mamdani MM, Van Walraven C, Tu JV. Quantifying the impact of survivor treatment bias in observational studies. J Eval Clin Pract 2006; 12: 601-12.PubMedCrossRefGoogle Scholar
  23. 23.
    Kleinbaum DG, Klein M. Survival Analysis, A Self-Learning Text. 3rd ed. NY: Springer; 2012 .Google Scholar
  24. 24.
    Hukkelhoven CW, Steyerberg EW, Rampen AJ, et al. Patient age and outcome following severe traumatic brain injury: an analysis of 5600 patients. J Neurosurg 2003; 99: 666-73.PubMedCrossRefGoogle Scholar
  25. 25.
    Demetriades D, Kuncir E, Velmahos GC, Rhee P, Alo K, Chan LS. Outcome and prognostic factors in head injuries with an admission Glasgow coma scale score of 3. Arch Surg 2004; 139: 1066-8.PubMedCrossRefGoogle Scholar
  26. 26.
    Vollmer DG, Torner JC, Jane JA, et al. Age and outcome following traumatic coma: why do older patients fare worse? J Neurosurg 1991; 75: S37-49.Google Scholar
  27. 27.
    Signorini DF, Andrews PJ, Jones PA, Wardlaw JM, Miller JD. Predicting survival using simple clinical variables: a case study in traumatic brain injury. J Neurol Neurosurg Psychiatry 1999; 66: 20-5.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Nakamura N, Yamaura A, Shigemori M, et al. Final report of the Japan Neurotrauma Data Bank project 1998-2001: 1,002 cases of traumatic brain injury. Neurol Med Chir (Tokyo) 2006; 46: 567-74.CrossRefGoogle Scholar
  29. 29.
    Brain Trauma Foundation. American Association of Neurological Surgeons, Congress of Neurological Surgeons. Guidelines for the management of severe traumatic brain injury. J Neurotrauma 2007; 24(Suppl 1): S1-106.Google Scholar
  30. 30.
    Choi SC, Muizelaar JP, Barnes TY, Marmarou A, Brooks DM, Young HF. Prediction tree for severely head-injured patients. J Neurosurg 1991; 75: 251-5.PubMedCrossRefGoogle Scholar
  31. 31.
    Hoffmann M, Lefering R, Rueger JM, et al. Pupil evaluation in addition to Glasgow coma scale components in prediction of traumatic brain injury and mortality. Br J Surg 2012; 99(Suppl 1): 122-30.PubMedCrossRefGoogle Scholar
  32. 32.
    Marmarou A, Lu J, Butcher I, et al. Prognostic value of the Glasgow coma scale and pupil reactivity in traumatic brain injury assessed pre-hospital and on enrollment: an IMPACT analysis. J Neurotrauma 2007; 24: 270-80.PubMedCrossRefGoogle Scholar
  33. 33.
    Hukkelhoven CW, Steyerberg EW, Habbema JD, et al. Predicting outcome after traumatic brain injury: development and validation of a prognostic score based on admission characteristics. J Neurotrauma 2005; 22: 1025-39.PubMedCrossRefGoogle Scholar
  34. 34.
    Healey C, Osler TM, Rogers FB, et al. Improving the Glasgow coma scale score: motor score alone is a better predictor. J Trauma 2003; 54: 671-80.PubMedCrossRefGoogle Scholar
  35. 35.
    Teasdale G, Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet 1974; 2: 81-4.PubMedGoogle Scholar
  36. 36.
    Teasdale G, Jennett B. Assessment and prognosis of coma after head injury. Acta Neurochir (Wien) 1976; 34: 45-55.CrossRefGoogle Scholar
  37. 37.
    Rivas JJ, Lobato RD, Sarabia R, Cordobes F, Cabrera A, Gomez P. Extradural hematoma: analysis of factors influencing the courses of 161 patients. Neurosurgery 1988; 23: 44-51.PubMedCrossRefGoogle Scholar
  38. 38.
    Thompson HJ, Rivara FP, Jurkovich GJ, Wang J, Nathens AB, MacKenzie EJ. Evaluation of the effect of intensity of care on mortality after traumatic brain injury. Crit Care Med 2008; 36: 282-90.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists' Society 2018

Authors and Affiliations

  • Peter R. A. Gerges
    • 1
  • Lynne Moore
    • 1
    • 2
  • Caroline Léger
    • 1
  • François Lauzier
    • 1
    • 3
    • 4
  • Michèle Shemilt
    • 1
  • Ryan Zarychanski
    • 5
  • Damon C. Scales
    • 6
    • 7
  • Karen E. A. Burns
    • 6
    • 8
  • Francis Bernard
    • 9
  • David Zygun
    • 10
  • Xavier Neveu
    • 1
  • Alexis F. Turgeon
    • 1
    • 3
  • Canadian Critical Care Trials Group
  1. 1.CHU de Québec – Université Laval Research Center, Population Health and Optimal Health Practices Research Unit, Trauma - Emergency - Critical Care MedicineUniversité LavalQuébec CityCanada
  2. 2.Department of Social and Preventive MedicineUniversité LavalQuébec CityCanada
  3. 3.Division of Critical Care Medicine, Department of Anesthesiology and Critical Care MedicineUniversité LavalQuébec CityCanada
  4. 4.Department of MedicineUniversité LavalQuébec CityCanada
  5. 5.Department of Internal Medicine, Sections of Critical Care Medicine, Haematology and of Medical OncologyUniversity of ManitobaWinnipegCanada
  6. 6.Interdepartmental Division of Critical Care MedicineUniversity of TorontoTorontoCanada
  7. 7.Sunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoCanada
  8. 8.Li Ka Shing Knowledge InstituteSt-Michaels HospitalTorontoCanada
  9. 9.Department of Internal MedicineUniversité de MontréalMontréalCanada
  10. 10.Department of Critical Care MedicineUniversity of AlbertaEdmontonCanada

Personalised recommendations