Advertisement

Predictive ability of perioperative atrial fibrillation risk indices in cardiac surgery patients: a retrospective cohort study

  • Nathan H. Waldron
  • Mary Cooter
  • Jonathan P. Piccini
  • Kevin J. Anstrom
  • Rebecca Y. Klinger
  • Miklos D. Kertai
  • Mihai V. Podgoreanu
  • Mark Stafford-Smith
  • Mark F. Newman
  • Joseph P. Mathew
Reports of Original Investigations
  • 143 Downloads

Abstract

Purpose

The Multicenter Study of Perioperative Ischemia (McSPI) AFRisk index predicts postoperative atrial fibrillation (POAF) after cardiac surgery, but requires pre-, intra-, and postoperative data. Other more abbreviated risk indices exist, but there is no consensus on which risk index is optimal. We compared the discriminatory capacity of the McSPI AFRisk index with three indices containing only preoperative data (the CHA2DS2Vasc score, POAF score, and Kolek clinical risk prediction model), hypothesizing that the McSPI AFRisk index would have superior predictive capacity.

Methods

We retrospectively evaluated 783 patients undergoing cardiac surgery using cardiopulmonary bypass. The predictive capacity of each index was assessed by comparing receiver-operating characteristic (ROC) curves, scaled Brier scores, net reclassification indices, and the integrated discrimination indices.

Results

The incidence of POAF was 32.6%. The area under the curve (AUC) of the ROC curve were 0.77, 0.58, 0.66, and 0.66 for the McSPI AFRisk index, CHA2DS2Vasc score, POAF score, and Kolek clinical risk prediction model, respectively. The McSPI AFRIsk index had the highest AUC (P < 0.0001). The scaled Brier scores for the McSPI AFRisk index, CHA2DS2Vasc score, POAF score, and Kolek clinical risk prediction model were 0.23, 0.02, 0.08, and 0.07, respectively. Both net reclassification indices and integrated discrimination indices showed that the McSPI AFRisk index more appropriately identified patients at high risk of POAF.

Conclusions

The McSPI AFRisk index showed superior ability to predict POAF after cardiac surgery compared with three other indices. When clinicians and investigators wish to measure the risk of POAF after cardiac surgery, they should consider using the McSPI AFRisk index.

Capacité de prédiction des indices de risque de fibrillation auriculaire périopératoire chez les patients de chirurgie cardiaque : une étude de cohorte rétrospective

Résumé

Objectif

L’indice AFRisk de l’étude multicentrique McSPI sur l’ischémie périopératoire prédit la fibrillation auriculaire postopératoire (POAF) après une chirurgie cardiaque, mais nécessite des données pré-, per- et postopératoires. Il existe d’autres indices de risques moins extensifs, mais il n’y a pas de consensus sur le choix de l’indice optimal. Nous avons comparé la capacité de discrimination de l’indice McSPI AFRisk à celle de trois autres indices ne contenant que des données préopératoires (le score CHA2DS2Vasc, le score POAF et le modèle de prédiction de risque clinique de Kolek) en énonçant l’hypothèse que la capacité de prédiction de l’indice McSPI AFRisk serait supérieure.

Méthodes

Nous avons évalué rétrospectivement 783 patients ayant subi une chirurgie cardiaque avec circulation extracorporelle. La capacité de prédiction de chaque indice a été évaluée en comparant les courbes d’efficacité du récepteur (ROC), les scores gradués de Brier, les indices de reclassement net et les indices de discrimination intégrée.

Résultats

L’incidence de la POAF était de 32,6 %. L’aire sous la courbe (ASC) de la courbe ROC était de 0,77, 0,58, 0,66 et 0,66 pour, respectivement, l’indice McSPI AFRisk, le score CHA2DS2Vasc, le score POAF et le modèle de prédiction de risque clinique de Kolek. L’indice McSPI AFRIsk avait l’ASC la plus élevée (P < 0,0001). Les scores gradués de Brier pour l’indice McSPI AFRisk, le score CHA2DS2Vasc, le score POAF et modèle de prédiction de risque clinique de Kolek étaient, respectivement, de 0,23, 0,02, 0,08 et 0,07. Les indices de reclassement net et de discrimination intégrée ont montré tous les deux que l’indice McSPI AFRisk identifiait mieux les patients à risque élevé de POAF.

Conclusions

L’indice McSPI AFRisk a démontré une capacité de prédiction de la POAF après chirurgie cardiaque supérieure à celle des trois autres indices. Quand les cliniciens et investigateurs souhaiteront mesurer le risque de POAF après chirurgie cardiaque, ils devraient envisager d’utiliser l’indice McSPI AFRisk.

Notes

Conflicts of interest

None declared.

Editorial responsibility

This submission was handled by Dr. Steven Backman, Associate Editor, Canadian Journal of Anesthesia.

Author contributions

Nathan H. Waldron and Joseph P. Mathew contributed substantially to all aspects of this manuscript, including conception and design; acquisition, analysis, and interpretation of data; and drafting the article. Mary Cooter, Jonathan P. Piccini, Kevin J. Anstrom, and Miklos D. Kertai contributed substantially to the conception and design of the manuscript. Rebecca Y. Klinger, Mihai V. Podgoreanu, Mark Stafford-Smith, and Mark F. Newman contributed substantially to the interpretation of data. All authors approved the final version of this article.

Funding

This work was supported by an American Heart Association Mentored Clinical & Population Research Award to the first author, NHW.

References

  1. 1.
    Mitchell LB, Exner DV, Wyse DG, et al. Prophylactic oral amiodarone for the prevention of arrhythmias that begin early after revascularization, valve replacement, or repair: PAPABEAR: a randomized controlled trial. JAMA 2005; 294: 3093-100.CrossRefPubMedGoogle Scholar
  2. 2.
    Mathew JP, Fontes ML, Tudor IC, et al. A multicenter risk index for atrial fibrillation after cardiac surgery. JAMA 2004; 291: 1720-9.CrossRefPubMedGoogle Scholar
  3. 3.
    Kertai MD, Li YW, Li YJ, et al. G protein-coupled receptor kinase 5 gene polymorphisms are associated with postoperative atrial fibrillation following coronary artery bypass graft surgery in patients receiving beta-blockers. Circ Cardiovasc Genet 2014; 7: 625-33.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Arsenault KA, Yusuf AM, Crystal E, et al. Interventions for preventing post-operative atrial fibrillation in patients undergoing heart surgery. Cochrane Database Syst Rev 2013; 1: CD003611.Google Scholar
  5. 5.
    LaPar DJ, Speir AM, Crosby IK, et al. Postoperative atrial fibrillation significantly increases mortality, hospital readmission, and hospital costs. Ann Thorac Surg 2014; 98: 527-33; discussion 533.Google Scholar
  6. 6.
    Amar D, Shi W, Hogue CW Jr, et al. Clinical prediction rule for atrial fibrillation after coronary artery bypass grafting. J Am Coll Cardiol 2004; 44: 1248-53.CrossRefPubMedGoogle Scholar
  7. 7.
    El-Chami MF, Kilgo P, Thourani V, et al. New-onset atrial fibrillation predicts long-term mortality after coronary artery bypass graft. J Am Coll Cardiol 2010; 55: 1370-6.CrossRefPubMedGoogle Scholar
  8. 8.
    Kolek MJ, Muehlschlegel JD, Bush WS, et al. Genetic and clinical risk prediction model for postoperative atrial fibrillation. Circ Arrhythm Electrophysiol 2015; 8: 25-31.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mariscalco G, Biancari F, Zanobini M, et al. Bedside tool for predicting the risk of postoperative atrial fibrillation after cardiac surgery: the POAF score. J Am Heart Assoc 2014; 3: e000752.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Tran DT, Perry JJ, Dupuis JY, Elmestekawy E, Wells GA. Predicting new-onset postoperative atrial fibrillation in cardiac surgery patients. J Cardiothorac Vasc Anesth 2015; 29: 1117-26.CrossRefPubMedGoogle Scholar
  11. 11.
    Klinger RY, Thunberg CA, White WD, et al. Intraoperative magnesium administration does not reduce postoperative atrial fibrillation after cardiac surgery. Anesth Analg 2015; 121: 861-7.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the Euro Heart Survey on atrial fibrillation. Chest 2010; 137: 263-72.CrossRefPubMedGoogle Scholar
  13. 13.
    Borde D, Gandhe U, Hargave N, Pandey K, Mathew M, Joshi S. Prediction of postoperative atrial fibrillation after coronary artery bypass grafting surgery: is CHA 2 DS 2 -VASc score useful? Ann Card Anaesth 2014; 17: 182-7.CrossRefPubMedGoogle Scholar
  14. 14.
    Chua SK, Shyu KG, Lu MJ, et al. Clinical utility of CHADS2 and CHA2DS2-VASc scoring systems for predicting postoperative atrial fibrillation after cardiac surgery. J Thorac Cardiovasc Surg 2013; 146: 919-926.e1.CrossRefPubMedGoogle Scholar
  15. 15.
    Yin L, Ling X, Zhang Y, et al. CHADS2 and CHA2DS2-VASc scoring systems for predicting atrial fibrillation following cardiac valve surgery. PLoS One 2015; 10: e0123858.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cameron MJ, Tran DT, Abboud J, Newton EK, Rashidian H, Dupuis JY. Prospective external validation of three preoperative risk scores for prediction of new onset atrial fibrillation after cardiac surgery. Anesth Analg 2018; 126: 33-8.CrossRefPubMedGoogle Scholar
  17. 17.
    Kertai MD, Li YJ, Ji Y, et al. Genome-wide association study of new-onset atrial fibrillation after coronary artery bypass grafting surgery. Am Heart J 2015; 170: 580-90.e28.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Harrell FE Jr, Lee KL, Califf RM, Pryor DB, Rosati RA. Regression modelling strategies for improved prognostic prediction. Stat Med 1984; 3: 143-52.CrossRefPubMedGoogle Scholar
  19. 19.
    Brier GW. Verification of forecasts expressed in terms of probability. Monthly Weather Review 1950; 78: 1-3.CrossRefGoogle Scholar
  20. 20.
    Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 2008; 27: 157-72; discussion 207-12.Google Scholar
  21. 21.
    Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 2010; 21: 128-38.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tzoulaki I, Liberopoulos G, Ioannidis JP. Use of reclassification for assessment of improved prediction: an empirical evaluation. Int J Epidemiol 2011; 40: 1094-105.CrossRefPubMedGoogle Scholar
  23. 23.
    Pepe MS, Feng Z, Gu JW. Comments on ‘Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond’ by M. J. Pencina et al., Statistics in Medicine (DOI:  https://doi.org/10.1002/sim.2929). Stat Med 2008; 27: 173-81.
  24. 24.
    Mariscalco G, Engstrom KG. Postoperative atrial fibrillation is associated with late mortality after coronary surgery, but not after valvular surgery. Ann Thorac Surg 2009; 88: 1871-6.CrossRefPubMedGoogle Scholar
  25. 25.
    Ahlsson A, Fengsrud E, Bodin L, Englund A. Postoperative atrial fibrillation in patients undergoing aortocoronary bypass surgery carries an eightfold risk of future atrial fibrillation and a doubled cardiovascular mortality. Eur J Cardiothorac Surg 2010; 37: 1353-9.CrossRefPubMedGoogle Scholar
  26. 26.
    Steinberg BA, Zhao Y, He X, et al. Management of postoperative atrial fibrillation and subsequent outcomes in contemporary patients undergoing cardiac surgery: insights from the Society of Thoracic Surgeons CAPS-Care Atrial Fibrillation Registry. Clin Cardiol 2014; 37: 7-13.CrossRefPubMedGoogle Scholar
  27. 27.
    Hravnak M, Hoffman LA, Saul MI, Zullo TG, Whitman GR. Resource utilization related to atrial fibrillation after coronary artery bypass grafting. Am J Crit Care 2002; 11: 228-38.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Melduni RM, Schaff HV, Bailey KR, et al. Implications of new-onset atrial fibrillation after cardiac surgery on long-term prognosis: a community-based study. Am Heart J 2015; 170: 659-68.CrossRefPubMedGoogle Scholar
  29. 29.
    Sigurdsson MI, Longford NT, Heydarpour M, et al. Duration of postoperative atrial fibrillation after cardiac surgery is associated with worsened long-term survival. Ann Thorac Surg 2016; 102: 2018-26.CrossRefPubMedGoogle Scholar
  30. 30.
    Zebis LR, Christensen TD, Kristiansen IS, Hjortdal VE. Amiodarone cost effectiveness in preventing atrial fibrillation after coronary artery bypass graft surgery. Ann Thorac Surg 2008; 85: 28-32.CrossRefPubMedGoogle Scholar
  31. 31.
    Aasbo JD, Lawrence AT, Krishnan K, Kim MH, Trohman RG. Amiodarone prophylaxis reduces major cardiovascular morbidity and length of stay after cardiac surgery: a meta-analysis. Ann Intern Med 2005; 143: 327-36.CrossRefPubMedGoogle Scholar
  32. 32.
    Greenland P, O’Malley PG. When is a new prediction marker useful? A consideration of lipoprotein-associated phospholipase A2 and C-reactive protein for stroke risk. Arch Intern Med 2005; 165: 2454-6.CrossRefPubMedGoogle Scholar
  33. 33.
    Mangieri A. Renin-angiotensin system blockers in cardiac surgery. J Crit Care 2015; 30: 613-8.CrossRefPubMedGoogle Scholar
  34. 34.
    Kuhn EW, Liakopoulos OJ, Stange S, et al. Preoperative statin therapy in cardiac surgery: a meta-analysis of 90,000 patients. Eur J Cardiothorac Surg 2014; 45: 17-26; discussion 26.Google Scholar
  35. 35.
    Bidar E, Maesen B, Nieman F, Verheule S, Schotten U, Maessen JG. A prospective randomized controlled trial on the incidence and predictors of late-phase postoperative atrial fibrillation up to 30 days and the preventive value of biatrial pacing. Heart Rhythm 2014; 11: 1156-62.CrossRefPubMedGoogle Scholar
  36. 36.
    Kerr KF, Wang Z, Janes H, McClelland RL, Psaty BM, Pepe MS. Net reclassification indices for evaluating risk prediction instruments: a critical review. Epidemiology 2014; 25: 114-21.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Canadian Anesthesiologists' Society 2018

Authors and Affiliations

  • Nathan H. Waldron
    • 1
    • 2
  • Mary Cooter
    • 1
  • Jonathan P. Piccini
    • 2
    • 3
  • Kevin J. Anstrom
    • 2
  • Rebecca Y. Klinger
    • 1
  • Miklos D. Kertai
    • 1
    • 4
  • Mihai V. Podgoreanu
    • 1
  • Mark Stafford-Smith
    • 1
  • Mark F. Newman
    • 1
  • Joseph P. Mathew
    • 1
  1. 1.Department of AnesthesiologyDuke University Medical CentreDurhamUSA
  2. 2.Duke Clinical Research InstituteDuke University School of MedicineDurhamUSA
  3. 3.Division of CardiologyDuke University Medical CenterDurhamUSA
  4. 4.Department of AnesthesiologyVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations