Effect of position and positive pressure ventilation on functional residual capacity in morbidly obese patients: a randomized trial

  • Etienne J. Couture
  • Steeve Provencher
  • Jacques Somma
  • François Lellouche
  • Simon Marceau
  • Jean S. Bussières
Reports of Original Investigations
  • 27 Downloads

Abstract

Purpose

In morbidly obese patients, the position and ventilation strategy used during pre-oxygenation influence the safe non-hypoxic apnea time and the functional residual capacity (FRC). In awake morbidly obese volunteers, we hypothesized that the FRC would be higher after a five-minute period of positive pressure ventilation compared with spontaneous ventilation at zero inspiratory pressure.

Methods

Using a prospective crossover randomized trial design, obese subjects underwent, in a randomized order, a combination of one of three positions, supine (S), beach chair (BC), and reverse Trendelenburg (RT), and one of two ventilation strategies, spontaneous ventilation at zero inspiratory pressure (ZEEP-SV) or with positive pressure (PP-SV) set to an inspiratory pressure of 8 cmH2O, positive end-expiratory pressure of 10 cmH2O, and fraction of inspired oxygen of 0.21.

Results

Seventeen obese volunteers with a mean (standard deviation; SD) body mass index of 50 (8) kg·m−2 were included. Mean (SD) FRC in the three positions (S, BC, RT) was significantly higher using PP-SV compared with ZEEP-SV [2571 (477) vs 2215 (481) mL, respectively; mean difference, 356; 95% confidence interval (CI), 209 to 502; P < 0.001]. Mean (SD) FRC was significantly higher in the RT compared with BC position [2483 (521) vs 2338 (469) mL, respectively; mean difference, 145; 95% CI, 31 to 404; P = 0.01], while there was no difference between S and BC [2359 (519) mL vs 2338 (469) mL, respectively; mean difference, 21; 95% CI, -93 to 135; P = 0.89].

Conclusion

In awake morbidly obese volunteers, an increase in the FRC is observed when spontaneous ventilation at zero inspiratory pressure is switched to positive pressure. Compared with S positioning, the BC position had no measurable impact on the FRC. The RT position resulted in an optimal FRC.

Trial registration

clinicaltrials.gov (NCT02121808). Registered 24 April 2014.

Effet de la position et de la ventilation en pression positive sur la capacité résiduelle fonctionnelle chez les patients obèses morbides : une étude randomisée

Résumé

Objectif

Chez les patients obèses morbides, la position et la stratégie de ventilation utilisées pendant la pré-oxygénation ont un impact sur la durée d’apnée sans désaturation et la capacité résiduelle fonctionnelle (CRF). Avec la participation de volontaires obèses morbides éveillés, nous avons émis l’hypothèse que la CRF serait plus élevée après cinq minutes de ventilation en pression positive par rapport à une ventilation spontanée sans pression inspiratoire.

Méthode

En se fondant sur une méthodologie d’étude randomisée croisée prospective, des volontaires obèses ont été soumis, de façon aléatoire, à une combinaison d’une de trois positions, soit la position allongée sur le dos (A), la position semi-assise (SA) et la position proclive (anti-Trendelenburg) (P), et de l’une de deux stratégies de ventilation, soit une ventilation spontanée sans pression inspiratoire (VS-0) ou avec une pression positive (VS-PP) établie à une pression inspiratoire égale à 8 cm H20, une pression positive télé-expiratoire de 10 cm H20, et une concentration d’oxygène inspiré de 0,21.

Résultats

Dix-sept volontaires obèses avec un indice de masse corporel moyen (écart type; ÉT) de 50 (8) kg·m−2 ont été inclus dans notre étude. La CRF moyenne (ÉT) dans les trois positions (A, SA, P) était significativement plus élevée lorsqu’on a utilisé une VS-PP par rapport à une VS-0 [2571 (477) vs 2215 (481) mL, respectivement; différence moyenne, 356; intervalle de confiance (IC) 95 %, 209 à 502; P < 0,001]. La CRF moyenne (ÉT) était significativement plus élevée dans la position P par rapport à la position SA [2483 (521) vs 2338 (469) mL, respectivement; différence moyenne, 145; IC 95 %, 31 à 404; P = 0,01], alors qu’aucune différence n’a été observée entre les positions A et SA [2359 (519) mL vs 2338 (469) mL, respectivement; différence moyenne, 21; IC 95 %, -93 à 135; P = 0,89].

Conclusion

Chez des volontaires obèses morbides éveillés, on observe une augmentation de la CRF lorsqu’on passe d’une ventilation spontanée sans pression inspiratoire à une ventilation spontanée en pression positive. Par rapport à un positionnement allongé, la position semi-assise n’a pas eu d’impact mesurable sur la CRF. La position proclive a eu pour résultat une CRF optimale.

Enregistrement de l’étude

clinicaltrials.gov (NCT02121808). Enregistrée le 24 avril 2014.

Notes

Conflict of interest

None declared.

Editorial responsibility

This submission was handled by Dr. Hilary P. Grocott, Editor-in-Chief, Canadian Journal of Anesthesia.

Author contributions

Etienne J. Couture made substantial contributions to conception and design, acquisition of data, interpretation of data, drafting the article, revising the article critically for important intellectual content, and final approval of the version to be published. Steeve Provencher and Jacques Somma made substantial contributions to conception and design, analysis and interpretation of data, revising the article critically for important intellectual content, and final approval of the version to be published. François Lellouche and Simon Marceau made substantial contributions to conception and design, revising the article critically for important intellectual content, and final approval of the version to be published. Jean S. Bussières made substantial contributions to conception and design, analysis and interpretation of data, drafting the article, and revising it critically for important intellectual content, and final approval of the version to be published.

Funding

Research fund from Anesthesiology research team, Department of Anesthesiology, Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval.

References

  1. 1.
    Peterson GN, Domino KB, Caplan RA, Posner KL, Lee LA, Cheney FW. Management of the difficult airway: a closed claims analysis. Anesthesiology 2005; 103: 33-9.CrossRefPubMedGoogle Scholar
  2. 2.
    Cook TM, Woodall N, Frerk C, Fourth National Audit Project. Major complications of airway management in the UK: results of the Fourth National Audit Project of the Royal College of Anaesthetists and the Difficult Airway Society. Part 1: anaesthesia. Br J Anaesth 2011; 106: 617-31.CrossRefPubMedGoogle Scholar
  3. 3.
    Cook TM, Woodall N, Harper J, Benger J, Fourth National Audit Project. Major complications of airway management in the UK: results of the Fourth National Audit Project of the Royal College of Anaesthetists and the Difficult Airway Society. Part 2: intensive care and emergency departments. Br J Anaesth 2011; 106: 632-42.CrossRefPubMedGoogle Scholar
  4. 4.
    Murphy C, Wong DT. Airway management and oxygenation in obese patients. Can J Anesth 2013; 60: 929-45.CrossRefPubMedGoogle Scholar
  5. 5.
    Jones RL, Nzekwu MM. The effects of body mass index on lung volumes. Chest 2006; 130: 827-33.CrossRefPubMedGoogle Scholar
  6. 6.
    Coussa M, Proietti S, Schnyder P, et al. Prevention of atelectasis formation during the induction of general anesthesia in morbidly obese patients. Anesth Analg 2004; 98: 1491-5.CrossRefPubMedGoogle Scholar
  7. 7.
    Nimmagadda U, Salem MR, Crystal GJ. Preoxygenation: physiologic basis, benefits, and potential risks. Anesth Analg 2017; 124: 507-17.CrossRefPubMedGoogle Scholar
  8. 8.
    Lundstrom LH, Moller AM, Rosenstock C, Astrup G, Wetterslev J. High body mass index is a weak predictor for difficult and failed tracheal intubation: a cohort study of 91,332 consecutive patients scheduled for direct laryngoscopy registered in the Danish Anesthesia Database. Anesthesiology 2009; 110: 266-74.PubMedGoogle Scholar
  9. 9.
    Farmery AD, Roe PG. A model to describe the rate of oxyhaemoglobin desaturation during apnoea. Br J Anaesth 1996; 76: 284-91.CrossRefPubMedGoogle Scholar
  10. 10.
    Shah U, Wong J, Wong DT, Chung F. Preoxygenation and intraoperative ventilation strategies in obese patients: a comprehensive review. Curr Opin Anaesthesiol 2016; 29: 109-18.CrossRefPubMedGoogle Scholar
  11. 11.
    Dixon BJ, Dixon JB, Carden JR, et al. Preoxygenation is more effective in the 25 degrees head-up position than in the supine position in severely obese patients: a randomized controlled study. Anesthesiology 2005; 102: 1110-5; discussion 5A.Google Scholar
  12. 12.
    Valenza F, Vagginelli F, Tiby A, et al. Effects of the beach chair position, positive end-expiratory pressure, and pneumoperitoneum on respiratory function in morbidly obese patients during anesthesia and paralysis. Anesthesiology 2007; 107: 725-32.CrossRefPubMedGoogle Scholar
  13. 13.
    Futier E, Constantin JM, Pelosi P, et al. Noninvasive ventilation and alveolar recruitment maneuver improve respiratory function during and after intubation of morbidly obese patients: a randomized controlled study. Anesthesiology 2011; 114: 1354-63.CrossRefPubMedGoogle Scholar
  14. 14.
    Collins JS, Lemmens HJ, Brodsky JB, Brock-Utne JG, Levitan RM. Laryngoscopy and morbid obesity: a comparison of the “sniff” and “ramped” positions. Obes Surg 2004; 49: 1171-5.CrossRefGoogle Scholar
  15. 15.
    Wanger J, Clausen JL, Coates A, et al. Standardisation of the measurement of lung volumes. Eur Respir J 2005; 26: 511-22.CrossRefPubMedGoogle Scholar
  16. 16.
    Gander S, Frascarolo P, Suter M, Spahn DR, Magnusson L. Positive end-expiratory pressure during induction of general anesthesia increases duration of nonhypoxic apnea in morbidly obese patients. Anesth Analg 2005; 100: 580-4.CrossRefPubMedGoogle Scholar
  17. 17.
    Porhomayon J, Papadakos P, Singh A, Nader ND. Alteration in respiratory physiology in obesity for anesthesia-critical care physician. HSR Proc Intensive Care Cardiovasc Anesth 2011; 3: 109-18.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Benedik PS, Baun MM, Keus L, et al. Effects of body position on resting lung volume in overweight and mildly to moderately obese subjects. Respir Care 2009; 54: 334-9.PubMedGoogle Scholar
  19. 19.
    Koenig SM. Pulmonary complications of obesity. Am J Med Sci 2001; 321: 249-79.CrossRefPubMedGoogle Scholar
  20. 20.
    Pelosi P, Croci M, Ravagnan I, Vicardi P, Gattinoni L. Total respiratory system, lung, and chest wall mechanics in sedated-paralyzed postoperative morbidly obese patients. Chest 1996; 109: 144-51.CrossRefPubMedGoogle Scholar
  21. 21.
    Cressey DM, Berthoud MC, Reilly CS. Effectiveness of continuous positive airway pressure to enhance pre-oxygenation in morbidly obese women. Anaesthesia 2001; 56: 680-4.CrossRefPubMedGoogle Scholar
  22. 22.
    Delay JM, Sebbane M, Jung B, et al. The effectiveness of noninvasive positive pressure ventilation to enhance preoxygenation in morbidly obese patients: a randomized controlled study. Anesth Analg 2008; 107: 1707-13.CrossRefPubMedGoogle Scholar
  23. 23.
    Tanoubi I, Drolet P, Fortier LP, Donati F. Inspiratory support versus spontaneous breathing during preoxygenation in healthy subjects. A randomized, double blind, cross-over trial. Ann Fr Anesth Reanim 2010; 29: 198-203.CrossRefPubMedGoogle Scholar
  24. 24.
    Georgescu M, Tanoubi I, Fortier LP, Donati F, Drolet P. Efficacy of preoxygenation with non-invasive low positive pressure ventilation in obese patients: crossover physiological study (French). Ann Fr Anesth Reanim 2012; 31: e161-5.CrossRefPubMedGoogle Scholar
  25. 25.
    Watson RA, Pride NB. Postural changes in lung volumes and respiratory resistance in subjects with obesity. J Appl Physiol 1985; 2005(98): 512-7.Google Scholar
  26. 26.
    Craig DB, Wahba WM, Don HF, Couture JG, Becklake MR. “Closing volume” and its relationship to gas exchange in seated and supine positions. J Appl Physiol 1971; 31: 717-21.CrossRefPubMedGoogle Scholar
  27. 27.
    Hignett R, Fernando R, McGlennan A, et al. A randomized crossover study to determine the effect of a 30° head-up versus a supine position on the functional residual capacity of term parturients. Anesth Analg 2011; 113: 1098-102.CrossRefPubMedGoogle Scholar
  28. 28.
    Lee BJ, Kang JM, Kim DO. Laryngeal exposure during laryngoscopy is better in the 25° back-up position than in the supine position. Br J Anaesth 2007; 99: 581-6.CrossRefPubMedGoogle Scholar
  29. 29.
    Campbell IT, Beatty PC. Monitoring preoxygenation. Br J Anaesth 1994; 72: 3-4.CrossRefPubMedGoogle Scholar
  30. 30.
    Baraka AS, Hanna MT, Jabbour SI, et al. Preoxygenation of pregnant and nonpregnant women in the head-up versus supine position. Anesth Analg 1992; 75: 757-9.CrossRefPubMedGoogle Scholar
  31. 31.
    Boyce JR, Ness T, Castroman P, Gleysteen JJ. A preliminary study of the optimal anesthesia positioning for the morbidly obese patient. Obes Surg 2003; 13: 4-9.CrossRefPubMedGoogle Scholar
  32. 32.
    Anonymous. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults—the evidence report. National Institutes of Health. Obes Res 1998; 6 Suppl 2: 51S-209S.Google Scholar

Copyright information

© Canadian Anesthesiologists' Society 2018

Authors and Affiliations

  • Etienne J. Couture
    • 1
  • Steeve Provencher
    • 2
  • Jacques Somma
    • 3
  • François Lellouche
    • 4
  • Simon Marceau
    • 5
  • Jean S. Bussières
    • 3
  1. 1.Department of Anesthesiology and Critical CareLaval UniversityQuébecCanada
  2. 2.Department of Pneumology, Institut Universitaire de Cardiologie et de Pneumologie de QuébecUniversité LavalQuébec CityCanada
  3. 3.Department of Anesthesiology, Institut Universitaire de Cardiologie et de Pneumologie de QuébecUniversité LavalQuébec CityCanada
  4. 4.Department of Critical Care, Institut Universitaire de Cardiologie et de Pneumologie de QuébecUniversité LavalQuébec CityCanada
  5. 5.Department of Bariatric Surgery, Institut Universitaire de Cardiologie et de Pneumologie de QuébecUniversité LavalQuébec CityCanada

Personalised recommendations