The influence of anesthesia-controlled time on operating room scheduling in Dutch university medical centres

  • Elizabeth van Veen-Berkx
  • Justin Bitter
  • Sylvia G. Elkhuizen
  • Wolfgang F. Buhre
  • Cor J. Kalkman
  • Hein G. Gooszen
  • Geert Kazemier
Reports of Original Investigations

Abstract

Background

Predicting total procedure time (TPT) entails several elements subject to variability, including the two main components: surgeon-controlled time (SCT) and anesthesia-controlled time (ACT). This study explores the effect of ACT on TPT as a proportion of TPT as opposed to a fixed number of minutes. The goal is to enhance the prediction of TPT and improve operating room scheduling.

Methods

Data from six university medical centres (UMCs) over seven consecutive years (2005-2011) were included, comprising 330,258 inpatient elective surgical cases. Based on the actual ACT and SCT, the revised prediction of TPT was determined as SCT × 1.33. Differences between actual and predicted total procedure times were calculated for the two methods of prediction.

Results

The predictability of TPT improved when the scheduling of procedures was based on predicting ACT as a proportion of SCT.

Conclusions

Efficient operating room (OR) management demands the accurate prediction of the times needed for all components of care, including SCT and ACT, for each surgical procedure. Supported by an extensive dataset from six UMCs, we advise grossing up the SCT by 33% to account for ACT (revised prediction of TPT = SCT × 1.33), rather than employing a methodology for predicting ACT based on a fixed number of minutes. This recommendation will improve OR scheduling, which could result in reducing overutilized OR time and the number of case cancellations and could lead to more efficient use of limited OR resources.

L’influence du temps contrôlé par l’anesthésie sur le programme opératoire dans les centres médicaux d’une université néerlandaise

Résumé

Contexte

La prédiction du temps total de procédure (TTP) implique plusieurs éléments soumis à variabilité, notamment ses deux principaux composants: le temps contrôlé par le chirurgien (TCC) et le temps contrôlé par l’anesthésie (TCA). Cette étude explore l’effet du TCA sur le TTP en tant que pourcentage du TTP, par opposition à un nombre déterminé de minutes. L’objectif est d’améliorer la prédiction du TTP et d’améliorer la planification du programme opératoire.

Méthodes

Les données provenant de six centres médicaux universitaires (CMU) pendant sept années consécutives (2005-2011) ont été incluses, portant sur 330 258 patients hospitalisés qui y ont subi des interventions chirurgicales programmées. En s’appuyant sur les véritables TCA et TCC, la prédiction révisée du TTP a été déterminée par l’équation TCC × 1,33. Les différences entre le temps total réel de procédures et le temps total prédit ont été calculées avec les deux méthodes de prédiction.

Résultats

La prévisibilité du TTP a été améliorée quand la planification des procédures s’est basée sur le TCA en le considérant comme un pourcentage du TCC.

Conclusions

Une gestion efficace de la salle d’opération exige une prédiction précise du temps nécessaire à toutes les composantes des soins, y compris le TCC et le TCA de chaque procédure chirurgicale. Confortés par un abondant ensemble de données provenant de six CMU, nous préconisons d’ajuster le TCC par un facteur de 33 % pour prendre en compte le TCA (prédiction révisée du TTP = TCC × 1,33), plutôt que d’employer une méthodologie de prévision du TCA reposant sur un nombre fixe de minutes. Cette recommandation améliorera la planification de la salle d’opération, ce qui pourrait entraîner une diminution des temps de salles surutilisées et du nombre de cas d’annulations, et pourrait aboutir à une utilisation plus rationnelle de ressources limitées en salles d’opération.

References

  1. 1.
    Marjamaa R, Vakkuri A, Kirvela O. Operating room management: why, how and by whom? Acta Anaesthesiol Scand 2008; 52: 596-600.PubMedCrossRefGoogle Scholar
  2. 2.
    Cardoen B, Demeulemeester E, Belien J. Operating room planning and scheduling: a literature review. European Journal of Operational Research 2010; 201: 921-32.CrossRefGoogle Scholar
  3. 3.
    Strum DP, Sampson AR, May JH, Vargas LG. Surgeon and type of anesthesia predict variability in surgical procedure times. Anesthesiology 2000; 92: 1454-66.PubMedCrossRefGoogle Scholar
  4. 4.
    Eijkemans MJ, van Houdenhoven M, Nguyen T, Boersma E, Steyerberg EW, Kazemier G. Predicting the unpredictable: a new prediction model for operating room times using individual characteristics and the surgeon’s estimate. Anesthesiology 2010; 112: 41-9.PubMedCrossRefGoogle Scholar
  5. 5.
    Tyler DC, Pasquariello CA, Chen CH. Determining optimum operating room utilization. Anesth Analg 2003; 96: 1114-21.PubMedCrossRefGoogle Scholar
  6. 6.
    Lehtonen JM, Torkki P, Peltokorpi A, Moilanen T. Increasing operating room productivity by duration categories and a newsvendor model. Int J Health Care Qual Assur 2013; 26: 80-92.PubMedCrossRefGoogle Scholar
  7. 7.
    Agnoletti V, Buccioli M, Padovani E, et al. Operating room data management: improving efficiency and safety in a surgical block. BMC Surg 2013; 13: 7.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Devi SP, Rao KS, Sangeetha SS. Prediction of surgery times and scheduling of operation theaters in ophthalmology department. J Med Syst 2012; 36: 415-30.PubMedCrossRefGoogle Scholar
  9. 9.
    Dexter F, Dexter EU, Masursky D, Nussmeier NA. Systematic review of general thoracic surgery articles to identify predictors of operating room case durations. Anesth Analg 2008; 106: 1232-41.PubMedCrossRefGoogle Scholar
  10. 10.
    Ehrenwerth J, Escobar A, Davis EA, et al. Can the attending anesthesiologist accurately predict the duration of anesthesia induction? Anesth Analg 2006; 103: 938-40.PubMedCrossRefGoogle Scholar
  11. 11.
    Gillespie BM, Chaboyer W, Fairweather N. Factors that influence the expected length of operation: results of a prospective study. BMJ Qual Saf 2012; 21: 3-12.PubMedCrossRefGoogle Scholar
  12. 12.
    Pandit JJ, Tavare A. Using mean duration and variation of procedure times to plan a list of surgical operations to fit into the scheduled list time. Eur J Anaesthesiol 2011; 28: 493-501.PubMedCrossRefGoogle Scholar
  13. 13.
    Smith CD, Spackman T, Brommer K, et al. Re-engineering the operating room using variability methodology to improve health care value. J Am Coll Surg 2013; 216: 559-68.PubMedCrossRefGoogle Scholar
  14. 14.
    Wright IH, Kooperberg C, Bonar BA, Bashein G. Statistical modeling to predict elective surgery time. Comparison with a computer scheduling system and surgeon-provided estimates. Anesthesiology 1996; 85: 1235-45.PubMedCrossRefGoogle Scholar
  15. 15.
    Fone D, Hollinghurst S, Temple M, et al. Systematic review of the use and value of computer simulation modelling in population health and health care delivery. J Public Health Med 2003; 25: 325-35.PubMedCrossRefGoogle Scholar
  16. 16.
    Kazemier G, van Veen-Berkx E. Comment on “Identification and use of operating room efficiency indicators: the problem of definition”. Can J Surg 2013; 56: E103-4.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Van Veen-Berkx E, Elkhuizen SG, Kalkman CJ, Buhre WF, Kazemier G. Successful interventions to reduce first-case tardiness in Dutch university medical centers. Results of a nationwide operating room benchmark study. Am J Surg 2014. DOI:10.1016/j.amjsurg.2013.09.025.PubMedGoogle Scholar
  18. 18.
    Dexter F, Coffin S, Tinker JH. Decreases in anesthesia-controlled time cannot permit one additional surgical operation to be reliably scheduled during the workday. Anesth Analg 1995; 81: 1263-8.PubMedGoogle Scholar
  19. 19.
    Overdyk FJ, Harvey SC, Fishman RL, Shippey F. Successful strategies for improving operating room efficiency at academic institutions. Anesth Analg 1998; 86: 896-906.PubMedGoogle Scholar
  20. 20.
    Alvarez R, Bowry R, Carter M. Prediction of the time to complete a series of surgical cases to avoid cardiac operating room overutilization. Can J Anesth 2010; 57: 973-9.PubMedCrossRefGoogle Scholar
  21. 21.
    Dexter F, Dexter EU, Ledolter J. Influence of procedure classification on process variability and parameter uncertainty of surgical case durations. Anesth Analg 2010; 110: 1155-63.PubMedCrossRefGoogle Scholar
  22. 22.
    Dexter F, Wachtel RE, Epstein RH, McIntosh C, O’Neill L. Allocative efficiency vs technical efficiency in operating room management. Anaesthesia 2007; 62: 1290-1; author reply 1-2.Google Scholar
  23. 23.
    Pandit JJ, Carey A. Estimating the duration of common elective operations: implications for operating list management. Anaesthesia 2006; 61: 768-76.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhou J, Dexter F, Macario A, Lubarsky DA. Relying solely on historical surgical times to estimate accurately future surgical times is unlikely to reduce the average length of time cases finish late. J Clin Anesth 1999; 11: 601-5.PubMedCrossRefGoogle Scholar
  25. 25.
    Dexter F, Ledolter J, Tiwari V, Epstein RH. Value of a scheduled duration quantified in terms of equivalent numbers of historical cases. Anesth Analg 2013; 117: 205-10.PubMedCrossRefGoogle Scholar
  26. 26.
    Dexter F, Ledolter J. Bayesian prediction bounds and comparisons of operating room times even for procedures with few or no historic data. Anesthesiology 2005; 103: 1259-67.PubMedCrossRefGoogle Scholar
  27. 27.
    Dexter F, Traub RD, Fleisher LA, Rock P. What sample sizes are required for pooling surgical case durations among facilities to decrease the incidence of procedures with little historical data? Anesthesiology 2002; 96: 1230-6.PubMedCrossRefGoogle Scholar
  28. 28.
    Escobar A, Davis EA, Ehrenwerth J, et al. Task analysis of the preincision surgical period: an independent observer-based study of 1558 cases. Anesth Analg 2006; 103: 922-7.PubMedCrossRefGoogle Scholar
  29. 29.
    Urman RD, Sarin P, Mitani A, Philip B, Eappen S. Presence of anesthesia resident trainees in day surgery unit has mixed effects on operating room efficiency measures. Ochsner J 2012; 12: 25-9.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Dexter F, Macario A. Applications of information systems to operating room scheduling. Anesthesiology 1996; 85: 1232-4.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists' Society 2014

Authors and Affiliations

  • Elizabeth van Veen-Berkx
    • 1
  • Justin Bitter
    • 2
    • 3
  • Sylvia G. Elkhuizen
    • 4
  • Wolfgang F. Buhre
    • 5
  • Cor J. Kalkman
    • 6
  • Hein G. Gooszen
    • 2
  • Geert Kazemier
    • 7
  1. 1.Department of Operating RoomsErasmus University Medical Centre RotterdamRotterdamThe Netherlands
  2. 2.Department of Operating RoomsRadboud University Medical Centre NijmegenNijmegenThe Netherlands
  3. 3.Bernhoven Hospital UdenUdenThe Netherlands
  4. 4.Institute for Health Policy and ManagementErasmus University RotterdamRotterdamThe Netherlands
  5. 5.Department of Anesthesiology and Pain MedicineMaastricht University Medical CentreMaastrichtThe Netherlands
  6. 6.Department of AnesthesiologyUniversity Medical Centre UtrechtUtrechtThe Netherlands
  7. 7.Department of SurgeryVU University Medical Centre AmsterdamAmsterdamThe Netherlands

Personalised recommendations