Skip to main content
Log in

Mechanical behavior and response mechanism of porous metal structures manufactured by laser powder bed fusion under compressive loading

  • Research Article
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

AlSi10Mg porous protective structure often produces different damage forms under compressive loading, and these damage modes affect its protective function. In order to well meet the service requirements, there is an urgent need to comprehensively understand the mechanical behavior and response mechanism of AlSi10Mg porous structures under compressive loading. In this paper, AlSi10Mg porous structures with three kinds of volume fractions are designed and optimized to meet the requirements of high-impact, strong-energy absorption, and lightweight characteristics. The mechanical behaviors of AlSi10Mg porous structures, including the stress–strain relationship, structural bearing state, deformation and damage modes, and energy absorption characteristics, were obtained through experimental studies at different loading rates. The damage pattern of the damage section indicates that AlSi10Mg porous structures have both ductile and brittle mechanical properties. Numerical simulation studies show that the AlSi10Mg porous structure undergoes shear damage due to relative misalignment along the diagonal cross-section, and the damage location is almost at 45° to the load direction, which is the most direct cause of its structural damage, revealing the damage mechanism of AlSi10Mg porous structures under the compressive load. The normalized energy absorption model constructed in the paper well interprets the energy absorption state of AlSi10Mg porous structures and gives the sensitive location of the structures, and the results of this paper provide important references for peers in structural design and optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Zamani and Z. Valefi, Comparative investigation of micro-structure and high-temperature oxidation resistance of high-velocity oxy-fuel sprayed CoNiCrAlY/nano-Al2O3 oomoosiee coatings using satellited powders, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1779.

    Article  CAS  Google Scholar 

  2. H.Y. Liu, J.L. Wu, S.Q. Wang, J. Duan, and H.P. Shao, Effect of Sr2+ on 3D gel-printed Sr3-xMgx(PO4)2 composite scaffolds for bone tissue engineering, Int. J. Miner. Metall. Mater., 30(2023), No. 11, p. 2236.

    Article  CAS  Google Scholar 

  3. B. Shi, H.S. Liang, Z.J. Xie, Q. Chang, and H.J. Wu, Dielectric loss enhancement induced by the microstructure of CoFe2O4 foam to realize broadband electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1388.

    Article  CAS  Google Scholar 

  4. Y.X. Geng, H. Tang, J.H. Xu, et al., Influence of process parameters and aging treatment on the microstructure and mechanical properties of AlSi8Mg3 alloy fabricated by selective laser melting, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1770.

    Article  CAS  Google Scholar 

  5. Y.F. Zhang, A. Majeed, M. Muzamil, J.X. Lv, T. Peng, and V. Patel, Investigation for macro mechanical behavior explicitly for thin-walled parts of AlSi10Mg alloy using selective laser melting technique, J. Manuf. Process., 66(2021), p. 269.

    Article  Google Scholar 

  6. S. Mojallal, H. Mohammadzadeh, A. Aghaeinejad-Meybodi, and R. Jafari, Effect of NiO-NiCr2O4 nano-oxides on the micro-structural, mechanical and corrosion properties of Ni-coated carbon steel, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1078.

    Article  CAS  Google Scholar 

  7. Z.Y. Wang, Z.Y. Zhao, B. Liu, P.C. Huo, and P.K. Bai, Compression properties of porous Inconel 718 alloy formed by selective laser melting, Adv. Compos. HybridMater., 4(2021), No. 4, p. 1309.

    Article  CAS  Google Scholar 

  8. L.Z. Xie, Z.G. Xu, Y.Z. Qi, et al., Effect of ball milling time on the microstructure and compressive properties of the Fe-Mn-Al porous steel, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 917.

    Article  CAS  Google Scholar 

  9. N. Tabatabaei, A. Zarei-Hanzaki, A. Moshiri, and H.R. Abedi, The effect of heat treatment on the room and high temperature mechanical properties of AlSi10Mg alloy fabricated by selective laser melting, J. Mater. Res. Technol., 23(2023), p. 6039.

    Article  CAS  Google Scholar 

  10. Y.W. Zhang, Y.L. Lin, Y. Li, and X.C. Li, 3D printed self-similar AlSi10Mg alloy hierarchical honeycomb architectures under in-plane large deformation, Thin Walled Struct., 164(2021), art. No. 107795.

  11. Y. Zhou, H.P. Wang, D. Wang, et al., Insight to the enhanced microwave absorption of porous N-doped carbon driven by ZIF-8: Competition between graphitization and porosity, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 474.

    Article  CAS  Google Scholar 

  12. X.N. Zhang, X.Y. Xie, Y.J. Li, B. Li, S.L. Yan, and P. Wen, Mechanical behavior of Al-Si10-Mg P-TPMS structure fabricated by selective laser melting and a unified mathematical model with geometrical parameter, Materials, 16(2023), No. 2, art. No. 468.

    Google Scholar 

  13. A. Baroutaji, A. Arjunan, J. Beal, J. Robinson, and J. Coroado, The influence of atmospheric oxygen content on the mechanical properties of selectively laser melted AlSi10Mg TPMS-based lattice, Materials, 16(2023), No. 1, art. No. 430.

    Google Scholar 

  14. L.G. Ren, Y.Q. Wang, X. Zhang, Q.C. He, and G.L. Wu, Efficient microwave absorption achieved through in situ construction of core-shell CoFe2O4@mesoporous carbon hollow spheres, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 504.

    Article  CAS  Google Scholar 

  15. H.A. AlQaydi, K. Krishnan, J. Oyebanji, et al., Hybridisation of AlSi10Mg lattice structures for engineered mechanical performance, Addit. Manuf., 57(2022), art. No. 102935.

  16. Y.S. Liu, E.H. Wang, L.C. Xu, et al., Synthesis of CA6/AlON composite with enhanced slag resistance, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 756.

    Article  CAS  Google Scholar 

  17. N. Limbasiya, A. Jain, H. Soni, V. Wankhede, G. Krolczyk, and P. Sahlot, A comprehensive review on the effect of process parameters and post-process treatments on microstructure and mechanical properties of selective laser melting of AlSi10Mg, J. Mater. Res. Technol., 21(2022), p. 1141.

    Article  CAS  Google Scholar 

  18. J.S. Yuan, Y. Zhang, X.Y. Zhang, L. Zhao, H.L. Shen, and S.G. Zhang, Template- free synthesis of core-shell Fe3O4@MoS2@mesoporous TiO2 magnetic photocatalyst for wastewater treatment, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 177.

    Article  CAS  Google Scholar 

  19. Y.N. Li, J. Zhan, C.H. Song, et al., Design and performance of a novel neutron shielding composite materials based on AlSi10Mg porous structure fabricated by laser powder bed fusion, J. Alloys Compd., 968(2023), art. No. 172180.

  20. X.J. Fan, Q. Tang, Q.X. Feng, et al., Design, mechanical properties and energy absorption capability of graded-thickness triply periodic minimal surface structures fabricated by selective laser melting, Int. J. Mech. Sci., 204(2021), art. No. 106586.

  21. W.T. Chen, W.B. Yu, P.C. Zhang, et al. Fabrication and performance of 3D co-continuous magnesium composites reinforced with Ti2AlNx MAX phase, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1406.

    Article  CAS  Google Scholar 

  22. H.R. Gao, X. Jin, J.Z. Yang, et al. Porous structure and compressive failure mechanism of additively manufactured cubiclattice tantalum scaffolds, Mater. Today Adv., 12(2021), art. No. 100183.

  23. D.Y. Zhang, D.H. Yi, X.P. Wu, et al., SiC reinforced AlSi10Mg composites fabricated by selective laser melting, J. Alloys Compd., 894(2022), art. No. 162365.

  24. Y.W. Luo, M.Y. Wang, J.G. Tu, Y. Jiang, and S.Q. Jiao, Reduction of residual stress in porous Ti6Al4V by in situ double scanning during laser additive manufacturing, Int. J. Miner. Metall. Mater., 28(2021), No. 11, p. 1844.

    Article  Google Scholar 

  25. M. Aktürk, M. Boy, M.K. Gupta, S. Waqar, G.M. Krolczyk, and M.E. Korkmaz, Numerical and experimental investigations of built orientation dependent Johnson–Cook model for selective laser melting manufactured AlSi10Mg, J. Mater. Res. Technol., 15(2021), p. 6244.

    Article  Google Scholar 

  26. T. Han, D.D. Qi, J. Ma, and C.Y. Sun, Generative design and mechanical properties of the lattice structures for tensile and compressive loading conditions fabricated by selective laser melting, Mech. Mater., 188(2024), art. No. 104840.

  27. T.Y. Yu, J.Y. Liu, Y. He, J.C. Tian, M.J. Chen, and Y. Wang, Microstructure and wear characterization of carbon nanotubes (CNTs) reinforced aluminum matrix nanocomposites manufactured using selective laser melting, Weai, 476(2021), art. No. 203581.

  28. X. Li, L.J. Xiao, and W.D. Song, Compressive behavior of selective laser melting printed Gyroid structures under dynamic loading, Addit. Manuf., 46(2021), art. No. 102054.

  29. J. Bi, L.K. Wu, Z.Q. Liu, et al., Formability, surface quality and compressive fracture behavior of AlMgScZr alloy lattice structure fabricated by selective laser melting, J. Mater. Res. Technol., 19(2022), p. 391.

    Article  CAS  Google Scholar 

  30. K.P. Logakannan, D. Ruan, J. Rengaswamy, S. Kumar, and V. Ramachandran, Fracture locus of additively manufactured AlSi10Mg alloy, Thin Walled Struct., 144(2223), art. No. 110460.

  31. K. Ishfaq, M. Abdullah, and M.A. Mahmood, A state-of-the-art direct metal laser sintering of Ti6Al4V and AlSi10Mg alloys: Surface roughness, tensile strength, fatigue strength and microstructure, Opt. Laser Technol., 143(2021), art. No. 107366.

  32. A. Ben, G. Yuval, S. Alon, S. Shmuel, and S. Oren, Study on the effects of manufacturing parameters on the dynamic properties of AlSi10Mg under dynamic loads using Taguchi procedure, Mater. Des., 223(2022), art. No. 111125.

  33. M.E. Korkmaz, M.K. Gupta, G. Robak, K. Moj, G.M. Krolczyk, and M. Kuntoglu, Development of lattice structure with selective laser melting process: A state of the art on properties, future trends and challenges, J. Manuf. Process., 81(2022), p. 1040.

    Article  Google Scholar 

  34. D.C. Kong, C.F. Dong, X.Q. Ni, et al. Microstructure and mechanical properties of nickel-based superalloy fabricated by laser powder-bed fusion using recycled powders, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 266.

    Article  CAS  Google Scholar 

  35. J.T. Zhou, X. Zhou, H. Li, J.W. Hu, X. Han, and S. Liu, In-situ laser shock peening for improved surface quality and mechanical properties of laser-directed energy-deposited AlSi10Mg alloy, Addit. Manuf., 60(2022), art. No. 103177.

  36. X. Wang, R.X. Qin, and B.Z. Chen, Mechanical properties and energy absorption capability of a topology-optimized lattice structure manufactured via selective laser melting under axial and offset loading, Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., 236(2022), No. 19, p. 10221.

    Article  Google Scholar 

  37. Y.W. Zhang, T. Liu, H. Ren, I. Maskery, and I. Ashcroft, Dynamic compressive response of additively manufactured AlSi10Mg alloy hierarchical honeycomb structures, Compos. Struct., 195(2018), p. 45.

    Article  Google Scholar 

  38. B. Amir, E. Kochavi, S. Gruntman, Y. Gale, S. Samuha, and O. Sadot, Experimental investigation on shear strength of laser powder bed fusion AlSi10Mg under quasi-static and dynamic loads, Addit. Manuf., 46(2021), art. No. 102150.

  39. M.G. Zhang, H. Mei, P. Chang, and L.F. Cheng, 3D printing of structured electrodes for rechargeable batteries, J. Mater. Chem. A, 8(2020), No. 21, p. 10670.

    Article  CAS  Google Scholar 

  40. V.A. Lvov, F.S. Senatov, A.M. Korsunsky, and A.I. Salimon, Design and mechanical properties of 3D-printed auxetic honeycomb structure, Mater. Today Commun., 2422020), art. No. 101173.

  41. Z. Feng, X.M. Wang, H. Tan, et al., Effect of heat treatment patterns on porosity, microstructure, and mechanical properties of selective laser melted TiB2/Al–Si–Mg composite, Mater. Sci. Eng. A, 855(2022), art. No. 143932.

  42. K. Matus, G. Matula, M. Pawlyta, J. Krzysteczko-Witek, and B. Tomiczek, TEM study of the microstructure of an alumina/Al composite prepared by gas-pressure infiltration, Materials, 15(2022), No. 17, art. No. 6112.

    Google Scholar 

  43. C.R. Chen, J.F. Ma, Y.M. Liu, G.F. Lian, X.X. Chen, and X. Huang, Compressive behavior and property prediction of gradient cellular structures fabricated by selective laser melting, Mater. Today Commun., 35(2023), art. No. 105853.

  44. C.C. Roth, T. Tancogne-Dejean, and D. Mohr, Plasticity and fracture of cast and SLM AlSi10Mg: High-throughput testing and modeling, Addit. Manuf., 43(2021), art. No. 101998.

  45. M. Araghi, H. Rokhgireh, and A. Nayebi, Experimental and FEM investigation of BCC lattice structure under compression test by using continuum damage mechanics with micro-defect closure effect, Mater. Des., 232(2023), art. No. 112125.

  46. S.K. Sharma, H.S. Grewal, K.K. Saxena, et al., Advancements in the additive manufacturing of magnesium and aluminum alloys through laser-based approach, Materials, 15(2022), No. 22, art. No. 8122.

    Google Scholar 

  47. F. Concli, R. Gerosa, D. Panzeri, and L. Fraccaroli, High and low cycle fatigue properties of selective laser melted AISI 316L and AlSi10Mg, Int. J. Fatigue, 177(2023), art. No. 107931.

  48. P. Ashwath, M.A. Xavior, A. Batako, P. Jeyapandiarajan, and J. Joel, Selective laser melting of Al–Si–10Mg alloy: Microstructural studies and mechanical properties assessment, J. Mater. Res. Technol., 17(2022), p. 2249.

    Article  CAS  Google Scholar 

  49. Y. Zhao, J. Bi, and X.P. Zhou, Quantitative analysis of rock-burst in the surrounding rock masses around deep tunnels, Eng. Geol., 273(2020), art. No. 105669.

  50. K. Miao, H. Zhou, Y.P. Gao, X. Deng, Z.L. Lu, and D.C. Li, Laser Powder-bed-fusion of Si3N4 reinforced AlSi10Mg composites: Poocesiing, mechanical properties and strengthening mechanisms, Mater. Sci. Eng. A, 825(2021), art. No. 141874.

  51. T. Maconachie, M. Leary, P. Tran, et al., The effect of topology on the quasi-static and dynamic behaviour of SLM AlSi10Mg lattice structures, Int. J. Adv. Manuf. Technol., 118(2022), No. 11, p. 4085.

    Article  Google Scholar 

  52. W.J. Zhang, Y.Y. Hu, X.F. Ma, et al., Very-high-cycle fatigue behavior of AlSi10Mg manufactured by selected laser melting: Crystal plasticity modeling, Int. J. Fatigue, 145(2021), art. No. 106109.

  53. G.Q. Wang, X. Chen, and C.L. Qiu, On the macro- and micro-deformation mechanisms of selectively laser melted damage tolerant metallic lattice structures, J. Alloys Compd., 852(2021), art. No. 156985.

  54. I. Maskery, A. Hussey, A. Panesar, et al., An investigation into reinforced and functionally graded lattice structures, J. Cell. Plast., 53(2017), No. 2, p. 151.

    Article  Google Scholar 

  55. C.G. Li, S. Sun, C.M. Liu, Q.H. Lu, P. Ma, and Y. Wang, Microstructure and mechanical properties of TiC/AlSi10Mg alloy fabricated by laser additive manufacturing under high-frequency micro-vibration, J. Alloys Compd., 794(2019), p. 236.

    Article  CAS  Google Scholar 

  56. H. Ramos, R. Santiago, S. Soe, P. Theobald, and M. Alves, Response of gyroid lattice structures to impact loads, Int. J. Impact Eng., 164(2022), art. No. 104202.

  57. E.M. Sefene, State-of-the-art of selective laser melting process: A comprehensive review, J. Manuf. Syst., 63(2022), p. 250.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 12272356, 12072326, and 12172337) and the State Key Laboratory of Dynamic Measurement Technology, North University of China (No. 2022-SYSJJ-03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuanming Cai or Wenshu Yang.

Ethics declarations

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Hou, Y., Zhang, W. et al. Mechanical behavior and response mechanism of porous metal structures manufactured by laser powder bed fusion under compressive loading. Int J Miner Metall Mater 31, 737–749 (2024). https://doi.org/10.1007/s12613-024-2865-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-024-2865-0

Keywords

Navigation