Skip to main content
Log in

Mechanism of microarc oxidation on AZ91D Mg alloy induced by β-Mg17Al12 phase

  • Research Article
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

This work proposed a strategy of indirectly inducing uniform microarc discharge by controlling the content and distribution of β-Mg17Al12 phase in AZ91D Mg alloy. Two kinds of nano-particles (ZrO2 and TiO2) were designed to be added into the substrate of Mg alloy by friction stir processing (FSP). Then, Mg alloy sample designed with different precipitated morphology of β-Mg17Al12 phase was treated by microarc oxidation (MAO) in Na3PO4/Na2SiO3 electrolyte. The characteristics and performance of the MAO coating was analyzed using scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), contact angle meter, and potentiodynamic polarization. It was found that the coarse α-Mg grains in extruded AZ91D Mg alloy were refined by FSP, and the β-Mg17Al12 phase with reticular structure was broken and dispersed. The nano-ZrO2 particles were pinned at the grain boundary by FSP, which refined the α-Mg grain and promoted the precipitation of β-Mg17Al12 phase in grains. It effectively inhibited the “cascade” phenomenon of microarcs, which induced the uniform distribution of discharge pores. The MAO coating on Zr-FSP sample had good wettability and corrosion resistance. However, TiO2 particles were hardly detected in the coating on Ti-FSP sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Hegy, R. Smith, E.R. Gauthier, and J.E. Gray-Munro, Investigation of a cyanine dye assay for the evaluation of the biocompatibility of magnesium alloys by direct and indirect methods, Bioact. Mater., 5(2020), No. 1, p. 26.

    PubMed  PubMed Central  Google Scholar 

  2. H.W. Chen, B. Yuan, R. Zhao, et al., Evaluation on the corrosion resistance, antibacterial property and osteogenic activity of biodegradable Mg–Ca and Mg–Ca–Zn–Ag alloys, J. Magnesium Alloys, 10(2022), No. 12, p. 3380.

    Article  CAS  Google Scholar 

  3. S.S. Park, U. Farwa, I. Park, B.G. Moon, S.B. Im, and B.T. Lee, In-vivo bone remodeling potential of Sr–d-Ca–P/PLLA-HAp coated biodegradable ZK60 alloy bone plate, Mater. Today Bio, 18(2023), art. No. 100533.

  4. W.H. Yao, L. Wu, J.F. Wang, et al., Micro-arc oxidation of magnesium alloys: A review, J. Mater. Sci. Technol., 118(2022), p. 158.

    Article  CAS  Google Scholar 

  5. A. Fattah-alhosseini, R. Chaharmahali, K. Babaei, M. Nouri, M.K. Keshavarz, and M. Kaseem, A review of effective strides in amelioration of the biocompatibility of PEO coatings on Mg alloys, J. Magnesium Alloys, 10(2022), No. 9, p. 2354.

    Article  CAS  Google Scholar 

  6. D.D. Wang, X.T. Liu, Y. Wang, et al., Role of the electrolyte composition in establishing plasma discharges and coating growth process during a micro-arc oxidation, Surf. Coat. Technol., 402(2020), art. No. 126349.

  7. X.N. Ly, S. Yang, and T. Nguyen, Effect of equal channel angular pressing as the pretreatment on microstructure and corrosion behavior of micro-arc oxidation (MAO) composite coating on biodegradable Mg–Zn–Ca alloy, Surf. Coat. Technol., 395(2020), art. No. 125923.

  8. T. Mi, B. Jiang, Z. Liu, et al., Self-organization kinetics of microarc oxidation: Nonequilibrium-state electrode reaction kinetics, J. Electrochem. Soc., 163(2016), No. 5, p. C184.

    Article  CAS  Google Scholar 

  9. L. Casanova, M. Arosio, M.T. Hashemi, M. Pedeferri, G.A. Botton, and M. Ormellese, A nanoscale investigation on the influence of anodization parameters during plasma electrolytic oxidation of titanium by high-resolution electron energy loss spectroscopy, Appl. Surf. Sci., 570(2021), art. No. 151133.

  10. D.S. Tsai and C.C. Chou, Influences of growth species and inclusions on the current–voltage behavior of plasma electrolytic oxidation: A review, Coatings, 11(2021), No. 3, art. No. 270.

  11. C.C. Liu, T. Xu, Q.Y. Shao, et al., Effects of beta phase on the growth behavior of plasma electrolytic oxidation coating formed on magnesium alloys, J. Alloys Compd., 784(2019), p. 414.

    Article  CAS  Google Scholar 

  12. Y.N. Xue, X. Pang, B.L. Jiang, H. Jahed, and D. Wang, Characterization of the corrosion performances of as-cast Mg–Al and Mg–Zn magnesium alloys with microarc oxidation coatings, Mater. Corros., 71(2020), No. 6, p. 992.

    Article  CAS  Google Scholar 

  13. E.Y. Liu, Y.F. Niu, S.R. Yu, et al., Micro-arc oxidation behavior of fly ash cenospheres/magnesium alloy degradable composite and corrosion resistance of coatings, Surf. Coat. Technol., 391(2020), art. No. 125693.

  14. Y.Q. Wang, X.J. Wang, T. Zhang, K. Wu, and F.H. Wang, Role of β phase during microarc oxidation of Mg alloy AZ91D and corrosion resistance of the oxidation coating, J. Mater. Sci. Technol., 29(2013), No. 12, p. 1129.

    Article  Google Scholar 

  15. Y. Chen, Y.G. Yang, W. Zhang, T. Zhang, and F.H. Wang, Influence of second phase on corrosion performance and formation mechanism of PEO coating on AZ91 Mg alloy, J. Alloys Compd., 718(2017), p. 92.

    Article  CAS  Google Scholar 

  16. R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, and A.K. Mukherjee, High strain rate superplasticity in a friction stir processed 7075 Al alloy, Scr. Mater., 42(1999), No. 2, p. 163

    Article  Google Scholar 

  17. A. Maqbool, N.Z. Khan, A.N. Siddiquee, I.A. Badruddin, M. Hussien, and M.I. Khan, Overcoming challenges in using magnesium-based materials for industrial applications using friction-stir engineering, Mater. Sci. Technol., 39(2023), No. 9, p. 1039.

    Article  CAS  Google Scholar 

  18. A.R. Eivani, M. Mehdizade, S. Chabok, and J. Zhou, Applying multi-pass friction stir processing to refine the microstructure and enhance the strength, ductility and corrosion resistance of WE43 magnesium alloy, J. Mater. Res. Technol., 12(2021), p. 1946.

    Article  CAS  Google Scholar 

  19. T.S. Kumar, S. Shalini, and T. Thankachan, Friction stir processing based surface modification of AZ31 magnesium alloy, Mater. Manuf. Process., 38(2023), No. 11, p. 1426.

    Article  Google Scholar 

  20. M.A. Khan, R. Butola, and N. Gupta, A review of nanoparticle reinforced surface composites processed by friction stir processing, J. Adhes. Sci. Technol., 37(2023), No. 4, p. 565.

    Article  CAS  Google Scholar 

  21. T. Qiu, L.M. Tan, D.J. Zhai, P. Ni, and J. Shen, Correlation between plasma electrolytic oxidation coating on Ti6Al4V alloy and cathode current, Metall. Mater. Trans. A, 54(2023), No. 1, p. 333.

    Article  CAS  Google Scholar 

  22. X.M. Wang and F.Q. Zhang, Influence of anions in phosphate and tetraborate electrolytes on growth kinetics of microarc oxidation coatings on Ti6Al4V alloy, Trans. Nonferrous Met. Soc. China, 32(2022), No. 7, p. 2243.

    Article  CAS  Google Scholar 

  23. G. Mortazavi, J.C. Jiang, and E.I. Meletis, Investigation of the plasma electrolytic oxidation mechanism of titanium, Appl. Surf. Sci., 488(2019), p. 370.

    Article  CAS  Google Scholar 

  24. Y.S. Yi, Y. Meng, D.Q. Li, S. Sugiyama, and J. Yanagimoto, Partial melting behavior and thixoforming properties of extruded magnesium alloy AZ91 with and without addition of SiC particles with a volume fraction of 15%, J. Mater. Sci. Technol., 34(2018), No. 7, p. 1149.

    Article  CAS  Google Scholar 

  25. J. Gao, S. Jiang, H. Zhang, et al., Facile route to bulk ultrafine-grain steels for high strength and ductility, Nature, 590(2021), No. 7845, p. 262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Y. Wang, B.W. Yang, M.Q. Gao, E.T. Zhao, and R.G. Guan, Microstructure evolution, mechanical property response and strengthening mechanism induced by compositional effects in Al–6Mg alloys, Mater. Des., 220(2022), art. No. 110849.

  27. S. Fatimah, H.W. Yang, M.P. Kamil, and Y.G. Ko, Control of surface plasma discharge considering the crystalline size of Al substrate, Appl. Surf. Sci., 477(2019), p. 60.

    Article  CAS  Google Scholar 

  28. G.B. Darband, M. Aliofkhazraei, P. Hamghalam, and N. Valizade, Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications, J. Magnesium Alloys, 5(2017), No. 1, p. 74.

    Article  Google Scholar 

  29. D.J. Zhai, T. Qiu, J. Shen, and K.Q. Feng, Mechanism of tetraborate and silicate ions on the growth kinetics of microarc oxidation coating on a Ti6Al4V alloy, RSC Adv., 13(2023), No. 8, p. 5382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. D.J. Zhai, K.Q. Feng, and H.F. Yue, Growth kinetics of microarc oxidation TiO2 ceramic film on Ti6Al4V alloy in tetraborate electrolyte, Metall. Mater. Trans. A, 50(2019), No. 5, p. 2507.

    Article  CAS  Google Scholar 

  31. T. Wu, C. Blawert, M. Serdechnova, et al., PEO processing of AZ91Nd/Al2O3 MMC-the role of alumina fibers, J. Magnesium Alloys, 10(2022), No. 2, p. 423.

    Article  Google Scholar 

  32. J.W. Lin, S.Q. He, X.X. Wang, H.H. Zhang, and Y.H. Zhan, Removal of phosphate from aqueous solution by a novel Mg(OH)2/ZrO2 composite: Adsorption behavior and mechanism, Colloids Surf. A, 561(2019), p. 301.

    Article  CAS  Google Scholar 

  33. S.K. Yang, C. Wang, F.Z. Li, et al., One-step in situ growth of a simple and efficient pore-sealing coating on micro-arc oxidized AZ31B magnesium alloy, J. Alloys Compd., 909(2022), art. No. 164710.

  34. L. Liu, S.R. Yu, G. Zhu, et al., Corrosion and wear resistance of micro-arc oxidation coating on glass microsphere reinforced Mg alloy composite, J. Mater. Sci., 56(2021), No. 27, p. 15379.

    Article  CAS  Google Scholar 

  35. M. Stern, Electrochemical polarization, J. Electrochem. Soc., 104(1957), No. 9, art. No. 559.

  36. G.L. Song, A. Atrens, X.L. Wu, and B. Zhang, Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride, Corros. Sci., 40(1998), No. 10, p. 1769.

    Article  CAS  Google Scholar 

  37. C.H. Shih, C.Y. Huang, T.H. Hsiao, and C.S. Lin, The effect of the secondary phases on the corrosion of AZ31B and WE43–T5 Mg alloys, Corros. Sci., 211(2023), art. No. 110920.

  38. J. Muldoon, C.B. Bucur, and T. Gregory, Fervent hype behind magnesium batteries: An open call to synthetic chemists—Electrolytes and cathodes needed, Angew. Chem. Int. Ed., 56(2017), No. 40, p. 12064.

    Article  CAS  Google Scholar 

  39. S.W. Guan, M. Qi, Y.D. Li, and W.Q. Wang, Morphology evolution of the porous coatings on Ti–xAl alloys by Al adding into Ti during micro-arc oxidation in Na2B4O7 electrolyte, Surf. Coat. Technol., 395(2020), art. No. 125948.

Download references

Acknowledgements

This research is funded by China Postdoctoral Science Foundation (No. 2021M700569) and Chongqing Postdoctoral Science Foundation (No. 7 cstc2021jcyj-bshX0087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Shen.

Ethics declarations

The authors declare that they have no competing financial interests or personal relationships that may have influenced the work reported in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, D., Li, X. & Shen, J. Mechanism of microarc oxidation on AZ91D Mg alloy induced by β-Mg17Al12 phase. Int J Miner Metall Mater 31, 712–724 (2024). https://doi.org/10.1007/s12613-023-2752-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2752-0

Keywords

Navigation