Skip to main content
Log in

Porous TiFe2 intermetallic compound fabricated via elemental powder reactive synthesis

  • Research Article
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Porous intermetallics show potential in the field of filtration and separation as well as in the field of catalysis. Herein, porous TiFe2 intermetallics were fabricated by the reactive synthesis of elemental powders. The phase transformation and pore formation of porous TiFe2 intermetallics were investigated, and its corrosion behavior and hydrogen evolution reaction (HER) performance in alkali solution were studied. Porous TiFe2 intermetallics with porosity in the range of 34.4%–56.4% were synthesized by the diffusion reaction of Ti and Fe elements, and the pore formation of porous TiFe2 intermetallic compound is the result of a combination of the bridging effect and the Kirkendall effect. The porous TiFe2 samples exhibit better corrosion resistance compared with porous 316L stainless steel, which is related to the formation of uniform nanosheets on the surface that hinder further corrosion, and porous TiFe2 electrode shows the overpotential of 220.6 and 295.6 mV at 10 and 100 mA·cm−2, suggesting a good catalytic performance. The synthesized porous Fe-based intermetallic has a controllable pore structure as well as excellent corrosion resistance, showing its potential in the field of filtration and separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Jiang, Y.H. He, and H.Y. Gao, Recent progress in porous intermetallics: Synthesis mechanism, pore structure, and material properties, J. Mater. Sci. Technol., 74(2021), p. 89.

    Article  CAS  Google Scholar 

  2. J.J. Wan, Z.M. Zhang, Y.M. Wang, et al., Synergistic covalent-and-supramolecular polymers connected by [2]pseudorotaxane moieties, Chem. Commun., 57(2021), No. 60, p. 7374.

    Article  CAS  Google Scholar 

  3. Y.L. Zhang, A.H. Feng, S.J. Qu, J. Shen, and D.L. Chen, Microstructure and low cycle fatigue of a Ti2AlNb-based lightweight alloy, J. Mater. Sci. Technol., 44(2020), p. 140.

    Article  CAS  Google Scholar 

  4. Z.C. Shang, X.P. Cai, H. Wang, et al., High temperature anti-oxidation and filtration behavior of micro/nano-scale porous CoAl intermetallic synthesized via rapid thermal explosion, Corros. Sci., 219(2023), art. No. 111216.

  5. Z.C. Shang, X.P. Cai, X.Y. Jiao, et al., 3D microstructure and anti-oxidation behavior of porous CoAl intermetallic fabricated by rapid thermal explosion, Corros. Sci., 208(2022), art. No. 110715.

  6. X.Y. Jiao, P.Z. Feng, J.Z. Wang, X.R. Ren, and F. Akhtar, Exothermic behavior and thermodynamic analysis for the formation of porous TiAl3 intermetallics sintering with different heating rates, J. Alloys Compd., 811(2019), art. No. 152056.

  7. Y.H. He, Y. Jiang, N.P. Xu, et al., Fabrication of Ti–Al micro/nanometer-sized porous alloys through the Kirkendall effect, Adv. Mater., 19(2007), No. 16, p. 2102.

    Article  CAS  Google Scholar 

  8. G.L. Hao, H. Wang, and X.Y. Li, Novel double pore structures of TiAl produced by powder metallurgy processing, Mater. Lett., 142(2015), p. 11.

    Article  CAS  Google Scholar 

  9. H. Sina, J. Corneliusson, K. Turba, and S. Iyengar, A study on the formation of iron aluminide (FeAl) from elemental powders, J. Alloys Compd., 636(2015), p. 261.

    Article  CAS  Google Scholar 

  10. G. Chen, K.D. Liss, C. Chen, Y.H. He, X.H. Qu, and P. Cao, Porous FeAl alloys via powder sintering: Phase transformation, microstructure and aqueous corrosion behavior, J. Mater. Sci. Technol., 86(2021), p. 64.

    Article  CAS  Google Scholar 

  11. Y.M. Shu, A. Suzuki, N. Takata, and M. Kobashi, Fabrication of porous NiAl intermetallic compounds with a hierarchical open-cell structure by combustion synthesis reaction and space holder method, J. Mater. Process. Technol., 264(2019), p. 182.

    Article  CAS  Google Scholar 

  12. T. Ide, M. Tane, and H. Nakajima, Fabrication of lotus-type porous NiAl and Ni3Al intermetallic compounds, Solid State Phenom., 124–126(2007), p. 1721.

    Article  Google Scholar 

  13. L. Wu, Y.H. He, T. Lei, et al., The stability of hydrogen evolution activity and corrosion behavior of porous Ni3Al–Mo electrode in alkaline solution during long-term electrolysis, Energy, 67(2014), p. 19.

    Article  CAS  Google Scholar 

  14. B.T. Shen, Y.H. He, Z.H. Wang, L.P. Yu, Y. Jiang, and H.Y. Gao, Reactive synthesis of porous FeSi intermetallic compound, J. Alloys Compd., 826(2020), art. No. 154227.

  15. B.T. Shen, Y.H. He, W.H. Li, et al., Insight into electrochemical performance of porous FexSiy intermetallic anode for zinc electrowinning, Mater. Des., 191(2020), art. No. 108645.

  16. B.T. Shen, Y.H. He, Z.L. He, Z.H. Wang, Y. Jiang, and H.Y. Gao, Porous Fe5Si3 intermetallic anode for the oxygen evolution reaction in acidic electrolytes, J. Colloid Interface Sci., 605(2022), p. 637.

    Article  CAS  PubMed  Google Scholar 

  17. S. Malik, S. Kishore, S. Prasad, and M.P. Shah, A comprehensive review on emerging trends in industrial wastewater research, J. Basic Microbiol., 62(2022), No. 3–4, p. 296.

    Article  PubMed  Google Scholar 

  18. V. Kumar and S.K. Dwivedi, A review on accessible techniques for removal of hexavalent Chromium and divalent Nickel from industrial wastewater: Recent research and future outlook, J. Cleaner Prod., 295(2021), art. No. 126229.

  19. A.V. Baskar, N. Bolan, S.A. Hoang, et al., Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: A review, Sci. Total Environ., 822(2022), art. No. 153555.

  20. R.M. Jain, K.H. Mody, J. Keshri, and B. Jha, Biological neutralization and biosorption of dyes of alkaline textile industry wastewater, Mar. Pollut. Bull., 84(2014), No. 1–2, p. 83.

    Article  CAS  PubMed  Google Scholar 

  21. J.H. Jeon, A.B.C. Sola, J.Y. Lee, and R.K. Jyothi, Hydrometallurgical process development to recycle valuable metals from spent SCR deNOX catalyst, Sci. Rep., 11(2021), No. 1, art. No. 22131.

  22. A.V. Boyarintsev, S.I. Stepanov, G.V. Kostikova, V.I. Zhilov, A.M. Safiulina, and A.Y. Tsivadze, Separation and purification of elements from alkaline and carbonate nuclear waste solutions, Nucl. Eng. Technol., 55(2023), No. 2, p. 391.

    Article  CAS  Google Scholar 

  23. A.A. Chichirov, N.D. Chichirova, A.A. Filimonova, A.I. Minibaev, and R.V. Buskin, Laboratory investigations of processing highly mineralized alkali solutions by means of electromembrane technology, Therm. Eng., 66(2019), No. 7, p. 527.

    Article  CAS  Google Scholar 

  24. T. Hua, R.J. Haynes, and Y.F. Zhou, Removal of Al, Ga, As, V and Mo from alkaline wastewater using pilot-scale constructed wetlands, Environ. Sci. Pollut. Res. Int., 26(2019), No. 34, p. 35121.

    Article  CAS  PubMed  Google Scholar 

  25. G. Tranchida, M. Clesi, F. Di Franco, F. Di Quarto, and M. Santamaria, Electronic properties and corrosion resistance of passive films on austenitic and duplex stainless steels, Electrochim. Acta, 273(2018), p. 412.

    Article  CAS  Google Scholar 

  26. N. Jeyaprakash, C.H. Yang, S.S. Karuppasamy, and M. Duraiselvam, Stellite 6 cladding on AISI type 316L stainless steel: Microstructure, nanohardness and corrosion resistance, Trans. Indian Inst. Met., 76(2023), No. 2, p. 491.

    Article  CAS  Google Scholar 

  27. A. Sharma, S. Shukla, M. Thombre, A. Bansod, and S. Untawale, An investigation of the effect of sensitization on the metallurgical characteristics of dissimilarly welded austenitic–ferritic stainless steel, Anti-Corros. Meth. Mater., 70(2023), No. 6, p. 361.

    Article  Google Scholar 

  28. R.R. Song, J.H. Han, M. Okugawa, et al., Ultrafine nanoporous intermetallic catalysts by high-temperature liquid metal dealloying for electrochemical hydrogen production, Nat. Commun., 13(2022), No. 1, art. No. 5157.

  29. Y. Qiu, Z.L. He, Y.H. He, Q. Zhao, Z.H. Wang, and Y. Jiang, Porous TiNi3-based intermetallics as active and robust monolith catalysts for hydrogen evolution, Chem. Commun., 58(2022), No. 100, p. 13943.

    Article  CAS  Google Scholar 

  30. J. Sun, N.K. Guo, T.S. Song, et al., Revealing the interfacial electron modulation effect of CoFe alloys with CoCX encapsulated in N-doped CNTs for superior oxygen reduction, Adv. Powder Mater., 1(2022), No. 3, art. No. 100023.

  31. J. Abed, S. Ahmadi, L. Laverdure, et al., In situ formation of nano Ni–Co oxyhydroxide enables water oxidation electrocatalysts durable at high current densities, Adv. Mater., 33(2021), No. 45, art. No. 2103812.

  32. A.I. Zhevnovatyi and G.F. Shenberg, Study of the production technology of porous titanium tubes, Sov. Powder Metall. Met. Ceram., 4(1965), No. 2, p. 95.

    Article  Google Scholar 

  33. P.S. Liu and K.M. Liang, Review Functional materials of porous metals made by P/M, electroplating and some other techniques, J. Mater. Sci., 36(2001), No. 21, p. 5059.

    Article  CAS  Google Scholar 

  34. Z.D. Lin, K.J. Song, and X.H. Yu, A review on wire and arc additive manufacturing of titanium alloy, J. Manuf. Process., 70(2021), p. 24.

    Article  Google Scholar 

  35. J.Z. Niu, G.Q. Dai, Y.H. Guo, et al., Microstructure and mechanical properties of B modified Ti–Fe alloy manufactured by casting, forging and laser melting deposition, Composites Part B, 216(2021), art. No. 108854.

  36. J.J. Noël, N. Ebrahimi, and D.W. Shoesmith, Corrosion of titanium and titanium alloys, [in] K. Wandelt, ed., Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Elsevier, Amsterdam, 2018, p. 192.

    Chapter  Google Scholar 

  37. Y. Xu, Y.L. Huang, F.F. Cai, D.Z. Lu, and X.T. Wang, Study on corrosion behavior and mechanism of AISI 4135 steel in marine environments based on field exposure experiment, Sci. Total Environ., 830(2022), art. No. 154864.

  38. C.X. Yi and B.F. Zhu, Corrosion inhibition effect of 2-hydroxy phosphonoacetic acid and pyrophosfate on Q235 steel, electrochemical noise and EIS analysis, Int. J. Electrochem. Sci., 14(2019), No. 7, p. 6759.

    Article  CAS  Google Scholar 

  39. Y. Zhao, L. Bai, Y.H. Sun, et al., Low-temperature alkali corrosion induced growth of nanosheet layers on NiTi alloy and their corrosion behavior and biological responses, Corros. Sci., 190(2021), art. No. 109654.

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (No. 51971251).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Jiang.

Ethics declarations

All the authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., He, Z., He, Y. et al. Porous TiFe2 intermetallic compound fabricated via elemental powder reactive synthesis. Int J Miner Metall Mater 31, 764–772 (2024). https://doi.org/10.1007/s12613-023-2748-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2748-9

Keywords

Navigation