Skip to main content
Log in

Solid-state impedance spectroscopy studies of dielectric properties and relaxation processes in Na2O-V2O5-Nb2O5-P2O5 glass system

  • Research Article
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Solid-state impedance spectroscopy (SS-IS) was used to investigate the influence of structural modifications resulting from the addition of Nb2O5 on the dielectric properties and relaxation processes in the quaternary mixed glass former (MGF) system 35Na2O-10V2O5-(55−x)P2O5xNb2O5 (x = 0–40, mol%). The dielectric parameters, including the dielectric strength and dielectric loss, are determined from the frequency and temperature-dependent complex permittivity data, revealing a significant dependence on the Nb2O5 content. The transition from a predominantly phosphate glass network (x < 10, region I) to a mixed niobate-phosphate glass network (10 ≤ x ≤ 20, region II) leads to an increase in the dielectric parameters, which correlates with the observed trend in the direct-current (DC) conductivity. In the predominantly niobate network (x ≥ 25, region III), the highly polarizable nature of Nb5+ ions leads to a further increase in the dielectric permittivity and dielectric strength. This is particularly evident in Nb-40 glass-ceramic, which contains Na13Nb35O94 crystalline phase with a tungsten bronze structure and exhibits the highest dielectric permittivity of 61.81 and the lowest loss factor of 0.032 at 303 K and 10 kHz. The relaxation studies, analyzed through modulus formalism and complex impedance data, show that DC conductivity and relaxation processes are governed by the same mechanism, attributed to ionic conductivity. In contrast to glasses with a single peak in frequency dependence of imaginary part of electrical modulus, M″(ω), Nb-40 glass-ceramic exhibits two distinct contributions with similar relaxation times. The high-frequency peak indicates bulk ionic conductivity, while the additional low-frequency peak is associated with the grain boundary effect, confirmed by the electrical equivalent circuit (EEC) modelling. The scaling characteristics of permittivity and conductivity spectra, along with the electrical modulus, validate time-temperature superposition and demonstrate a strong correlation with composition and modification of the glass structure upon Nb2O5 incorporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q.B. Yuan, M. Chen, S.L. Zhan, Y.X. Li, Y. Lin, and H.B. Yang, Ceramic-based dielectrics for electrostatic energy storage applications: Fundamental aspects, recent progress, and remaining challenges, Chem. Eng. J., 446(2022), art. No. 136315.

  2. Z.H. Yao, Z. Song, H. Hao, et al., Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances, Adv. Mater., 29(2017), No. 20, art. No. 1601727.

  3. A. Smirnova, A. Numan-Al-Mobin, and Inamuddin, Green Sustainable Process for Chemical and Environmental Engineering and Science: Solid-State Energy Storage - A Path to Environmental Sustainability, Elsevier, Amsterdam, 2023.

    Google Scholar 

  4. S. Gandi, V.S.C.S. Vaddadi, S.S.S. Panda, et al., Recent progress in the development of glass and glass-ceramic cathode/solid electrolyte materials for next-generation high capacity all-solid-state sodium-ion batteries: A review, J. Power Sources, 521(2022), art. No. 230930.

  5. C. Chen, Y.X. Zheng, and B. Li, Achieving ultrafast discharge speed and excellent energy storage efficiency in environmentally friendly niobate-based glass ceramics, J. Eur. Ceram. Soc., 42(2022), No. 15, p. 6977.

    Article  CAS  Google Scholar 

  6. T.T. Fu, S.F. Xie, C.S. Liu, H.R. Bai, B. Shen, and J.W. Zhai, High discharge energy density and ultralow dielectric loss in alkali-free niobate-based glass-ceramics by composition optimization, Scripta Mater., 221(2022), art. No. 114993.

  7. F. Luo, Y.Y. Qin, F. Shang, and G.H. Chen, Crystallization temperature dependence of structure, electrical and energy storage properties in BaO-Na2O-Nb2O5-Al2O3-B2O3 glass ceramics, Ceram. Int., 48(2022), No. 20, p. 30661.

    Article  CAS  Google Scholar 

  8. C.S. Liu, S.F. Xie, K.K. Chen, B.J. Song, B. Shen, and J.W. Zhai, High breakdown strength and enhanced energy storage performance of niobate-based glass-ceramics via glass phase structure optimization, Ceram. Int., 47(2021), No. 22, p. 31229.

    Article  CAS  Google Scholar 

  9. T. Komatsu, T. Honma, T. Tasheva, and V. Dimitrov, Structural role of Nb2O5 in glass-forming ability, electronic polarizability and nanocrystallization in glasses: A review, J. Non-Cryst. Solids, 581(2022), art. No. 121414.

  10. S.J. Wang, J. Tian, K. Yang, J.R. Liu, J.W. Zhai, and B. Shen, Crystallization kinetics behavior and dielectric energy storage properties of strontium potassium niobate glass-ceramics with different nucleating agents, Ceram. Int., 44(2018), No. 7, p. 8528.

    Article  CAS  Google Scholar 

  11. M.P.F. Graça, M.G.F. da Silva, A.S.B. Sombra, and M.A. Valente, Electric and dielectric properties of a SiO2-Na2O-Nb2O5 glass subject to a controlled heat-treatment process, Physica B, 396(2007), No. 1–2, p. 62.

    Article  Google Scholar 

  12. X. Peng, Y.P. Pu, Z.X. Sun, et al., Achieving high electrical homogeneity in (Na2O, K2O)-Nb2O5-SiO2-MO (M = Ca2+, Sr2+, Ba2+) glass-ceramics for energy storage by composition design, Composites Part B, 260(2023), art. No. 110765.

  13. X.Y. Liu, K. Zhao, and H. Jiao, Stabilizing the anti-ferroelectric phase in NaO-Nb2O5-CaO-B2O3-SiO2-ZrO2 glass-ceramics using the modification of K+ ion, Ceram. Int., 49(2023), No. 12, p. 21078.

    Article  CAS  Google Scholar 

  14. M.P.F. Graça, M.G.F. da Silva, and M.A. Valente, NaNbO3 crystals dispersed in a B2O3 glass matrix–Structural characteristics versus electrical and dielectrical properties, Solid State Sci., 11(2009), No. 2, p. 570.

    Article  Google Scholar 

  15. S. Benyounoussy, L. Bih, F. Muñoz, F. Rubio-Marcos, M. Naji, and A. El Bouari, Structure, dielectric, and energy storage behaviors of the lossy glass-ceramics obtained from Na2O-Nb2O5-P2O5 glassy-system, Phase Transitions, 94(2021), No. 9, p. 634.

    Article  CAS  Google Scholar 

  16. S. Benyounoussy, L. Bih, F. Muñoz, F. Rubio-Marcos, and A. El Bouari, Effect of the Na2O-Nb2O5-P2O5 glass additive on the structure, dielectric and energy storage performances of sodium niobate ceramics, Heliyon, 7(2021), No. 5, art. No. e07113.

  17. A. Ihyadn, A. Lahmar, D. Mezzane, et al., Structural, electrical and energy storage properties of BaO-Na2O-Nb2O5-WO3-P2O5 glass-ceramics system, Mater. Res. Express, 6(2019), No. 11, art. No. 115203.

  18. A. Ihyadn, S. Merselmiz, D. Mezzane, et al., Dielectric and energy storage properties of Ba0.85Ca0.15Zr0.1Ti0.90O3 ceramics with BaO-Na2O-Nb2O5-WO3-P2O5 glass addition, J. Mater. Sci. Mater. Electron., 34(2023), No. 12, art. No. 1051.

  19. M. Maraj, W.W. Wei, B.L. Peng, and W.H. Sun, Dielectric and energy storage properties of Ba(1−x)CaxZryTi(1−y)O3 (BCZT): A review, Materials, 12(2019), No. 21, art. No. 3641.

  20. L. Zhang, Y.P. Pu, and M. Chen, Complex impedance spectroscopy for capacitive energy-storage ceramics: A review and prospects, Mater. Today Chem., 28(2023), art. No. 101353.

  21. S. Sanghi, A. Sheoran, A. Agarwal, and S. Khasa, Conductivity and dielectric relaxation in niobium alkali borate glasses, Physica B, 405(2010), No. 24, p. 4919.

    Article  CAS  Google Scholar 

  22. M.P.F. Graça, B.M.G. Melo, P.R. Prezas, M.A. Valente, F.N.A. Freire, and L. Bih, Electrical and dielectric analysis of phosphate based glasses doped with alkali oxides, Mater. Des., 86(2015), p. 427.

    Article  Google Scholar 

  23. Y. Attafi and S.Q. Liu, Conductivity and dielectric properties of Na2O-K2O-Nb2O5-P2O5 glasses with varying amounts of Nb2O5, J. Non-Cryst. Solids, 447(2016), p. 74.

    Article  CAS  Google Scholar 

  24. K.S. Gerace, M.T. Lanagan, and J.C. Mauro, Dielectric polarizability of SiO2 in niobiosilicate glasses, J. Am. Ceram. Soc., 106(2023), No. 8, p. 4546.

    Article  CAS  Google Scholar 

  25. S. Marijan, M. Razum, T. Klaser, et al., Tailoring structure for improved sodium mobility and electrical properties in V2O5-Nb2O5-P2O5 glass(es)-(ceramics), J. Phys. Chem. Solids, 181(2023), art. No. 111461.

  26. A. Moguš-Milanković, K. Sklepić, H. Blažanović, P. Mošner, M. Vorokhta, and L. Koudelka, Influence of germanium oxide addition on the electrical properties of Li2O-B2O3-P2O5 glasses, J. Power Sources, 242(2013), p. 91.

    Article  Google Scholar 

  27. V. Prasad, L. Pavić, A. Moguš-Milanković, et al., Influence of silver ion concentration on dielectric characteristics of Li2O-Nb2O5-P2O5 glasses, J. Alloys Compd., 773(2019), p. 654.

    Article  CAS  Google Scholar 

  28. L. Pavić, Ž. Skoko, A. Gajović, D.S. Su, and A. Moguš-Milanković, Electrical transport in iron phosphate glass-ceramics, J. Non-Cryst. Solids, 502(2018), p. 44.

    Article  Google Scholar 

  29. L. Pavić, K. Sklepić, Ž. Skoko, et al., Ionic conductivity of lithium germanium phosphate glass-ceramics, J. Phys. Chem. C, 123(2019), No. 38, p. 23312.

    Article  Google Scholar 

  30. L. Pavić, J. Nikolić, M.P.F. Graça, et al., Effect of controlled crystallization on polaronic transport in phosphate-based glass-ceramics, Int. J. Appl. Glass Sci., 11(2020), No. 1, p. 97.

    Article  Google Scholar 

  31. A. Bafti, S. Kubuki, H. Ertap, et al., Electrical transport in iron phosphate-based glass-(ceramics): Insights into the role of B2O3 and HfO2 from model-free scaling procedures, Nanomaterials, 12(2022), No. 4, art. No. 639.

  32. F. Kremer and A. Schönhals, Broadband Dielectric Spectroscopy, Springer Berlin, Heidelberg, 2003.

    Book  Google Scholar 

  33. D.L. Sidebottom, Universal approach for scaling the ac conductivity in ionic glasses, Phys. Rev. Lett., 82(1999), No. 18, p. 3653.

    Article  CAS  Google Scholar 

  34. D.L. Sidebottom, B. Roling, and K. Funke, Ionic conduction in solids: Comparing conductivity and modulus representations with regard to scaling properties, Phys. Rev. B, 63(2000), No. 2, art. No. 024301.

  35. N.K. Mohan, M.R. Reddy, C.K. Jayasankar, and N. Veeraiah, Spectroscopic and dielectric studies on MnO doped PbO-Nb2O5-P2O5 glass system, J. Alloys Compd., 458(2008), No. 1–2, p. 66.

    Article  CAS  Google Scholar 

  36. B. Roling, Scaling properties of the conductivity spectra of glasses and supercooled melts, Solid State Ionics, 105(1998), No. 1–4, p. 185.

    Article  CAS  Google Scholar 

  37. M. Bakry and L. Klinkenbusch, Using the Kramers-Kronig transforms to retrieve the conductivity from the effective complex permittivity, Adv. Radio Sci., 16(2018), p. 23.

    Article  Google Scholar 

  38. P.B. Macedo, C.T. Moynihan, and R. Bose, Role of ionic diffusion in polarization in vitreous ionic conductors, Phys. Chem. Glasses, 13(1972), No. 6, p. 171.

    CAS  Google Scholar 

  39. D.C. Sinclair, Characterization of electro-materials using ac impedance spectroscopy, Bol. Soc. Esp. Ceram. Vidrio, 34(1995), No. 2, p. 55.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Croatian Science Foundation, POLAR-ION-GLASS project IP-2018-01-5425 and project DOK-2021-02-9665. The authors also thank for the donation from the Croatian Academy of Science and Arts (HAZU) 2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luka Pavić.

Ethics declarations

The authors declare that they have no known competing financial/commercial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marijan, S., Pavić, L. Solid-state impedance spectroscopy studies of dielectric properties and relaxation processes in Na2O-V2O5-Nb2O5-P2O5 glass system. Int J Miner Metall Mater 31, 186–196 (2024). https://doi.org/10.1007/s12613-023-2744-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2744-0

Keywords

Navigation