Skip to main content
Log in

Selective leaching of lithium from spent lithium-ion batteries using sulfuric acid and oxalic acid

  • Research Article
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Traditional hydrometallurgical methods for recovering spent lithium-ion batteries (LIBs) involve acid leaching to simultaneously extract all valuable metals into the leachate. These methods usually are followed by a series of separation steps such as precipitation, extraction, and stripping to separate the individual valuable metals. In this study, we present a process for selectively leaching lithium through the synergistic effect of sulfuric and oxalic acids. Under optimal leaching conditions (leaching time of 1.5 h, leaching temperature of 70°C, liquid-solid ratio of 4 mL/g, oxalic acid ratio of 1.3, and sulfuric acid ratio of 1.3), the lithium leaching efficiency reached 89.6%, and the leaching efficiencies of Ni, Co, and Mn were 12.8%, 6.5%, and 21.7%. X-ray diffraction (XRD) and inductively coupled plasma optical emission spectrometer (ICP-OES) analyses showed that most of the Ni, Co, and Mn in the raw material remained as solid residue oxides and oxalates. This study offers a new approach to enriching the relevant theory for selectively recovering lithium from spent LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.W. Duan, W.K. Zhu, Z.K. Ruan, M. Xie, J. Chen, and X.H. Ren, Recycling of lithium batteries—A review, Energies, 15(2022), No. 5, art. No. 1611.

  2. T. Or, S.W.D. Gourley, K. Kaliyappan, A.P. Yu, and Z.W. Chen, Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook, Carbon Energy, 2(2020), No. 1, p. 6.

    Article  CAS  Google Scholar 

  3. J.N. Meegoda, S. Malladi, and I.C. Zayas, End-of-life management of electric vehicle lithium-ion batteries in the United States, Clean Technol., 4(2022), No. 4, p. 1162.

    Article  Google Scholar 

  4. S. Natarajan and V. Aravindan, Burgeoning prospects of spent lithium-ion batteries in multifarious applications, Adv. Energy Mater., 8(2018), No. 33, art. No. 1802303.

  5. S.H. Joo, D.J. Shin, C. Oh, J.P. Wang, G. Senanayake, and S.M. Shin, Selective extraction and separation of nickel from cobalt, manganese and lithium in pre-treated leach liquors of ternary cathode material of spent lithium-ion batteries using synergism caused by Versatic 10 acid and LIX 84-I, Hydrometallurgy, 159(2016), p. 65.

    Article  CAS  Google Scholar 

  6. E. Gratz, Q.N. Sa, D. Apelian, and Y. Wang, A closed loop process for recycling spent lithium ion batteries, J. Power Sources, 262(2014), p. 255.

    Article  CAS  Google Scholar 

  7. L. Yang, G.X. Xi, and Y.B. Xi, Recovery of Co, Mn, Ni, and Li from spent lithium ion batteries for the preparation of LiNixCoyMnzO2 cathode materials, Ceram. Int., 41(2015), No. 9, p. 11498.

    Article  CAS  Google Scholar 

  8. N. Bahaloo-Horeh, S.M. Mousavi, and M. Baniasadi, Use of adapted metal tolerant Aspergillus niger to enhance bioleaching efficiency of valuable metals from spent lithium-ion mobile phone batteries, J. Cleaner Prod., 197(2018), p. 1546.

    Article  CAS  Google Scholar 

  9. A. Heydarian, S.M. Mousavi, F. Vakilchap, and M. Baniasadi, Application of a mixed culture of adapted acidophilic bacteria in two-step bioleaching of spent lithium-ion laptop batteries, J. Power Sources, 378(2018), p. 19.

    Article  CAS  Google Scholar 

  10. Y.Y. Xin, X.M. Guo, S. Chen, J. Wang, F. Wu, and B.P. Xin, Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery, J. Cleaner Prod., 116(2016), p. 249.

    Article  CAS  Google Scholar 

  11. M. Assefi, S. Maroufi, Y. Yamauchi, and V. Sahajwalla, Pyrometallurgical recycling of Li-ion, Ni–Cd and Ni–MH batteries: A minireview, Curr. Opin. Green Sustain. Chem., 24(2020), p. 26.

    Article  Google Scholar 

  12. B. Makuza, Q.H. Tian, X.Y. Guo, K. Chattopadhyay, and D.W. Yu, Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review, J. Power Sources, 491(2021), art. No. 229622.

  13. S. Windisch-Kern, A. Holzer, C. Ponak, and H. Raupenstrauch, Pyrometallurgical lithium-ion-battery recycling: Approach to limiting lithium slagging with the InduRed reactor concept, Processes, 9(2021), No. 1, art. No. 84.

  14. L. Yun, D. Linh, L. Shui, et al., Metallurgical and mechanical methods for recycling of lithium-ion battery pack for electric vehicles, Resour. Conserv. Recycl., 136(2018), p. 198.

    Article  CAS  Google Scholar 

  15. C. Ekberg and M. Petranikova, Chapter 7 - Lithium batteries recycling, [in] A. Chagnes and J. Światowska, eds., Lithium Process Chemistry: Resources, Extraction, Batteries and Recycling, Elsevier, Amsterdam, 2015, p. 233.

    Chapter  Google Scholar 

  16. Z. Sun, H. Cao, Y. Xiao, et al., Toward sustainability for recovery of critical metals from electronic waste: The hydrochemistry processes, ACS Sustainable Chem. Eng., 5(2017), No. 1, p. 21.

    Article  CAS  Google Scholar 

  17. D.X. Wang, W. Li, S. Rao, et al., Oxygen-free calcination for enhanced leaching of valuable metals from spent lithium-ion batteries without a reductant, Sep. Purif. Technol., 259(2021), art. No. 118212.

  18. D.D. Chen, S. Rao, D.X. Wang, H.Y. Cao, W.M. Xie, and Z.Q. Liu, Synergistic leaching of valuable metals from spent Li-ion batteries using sulfuric acid-L-ascorbic acid system, Chem. Eng. J., 388(2020), art. No. 124321.

  19. S. Gu, L. Zhang, B.T. Fu, X.P. Wang, and J.W. Ahn, Feasible route for the recovery of strategic metals from mixed lithiumion batteries cathode materials by precipitation and carbonation, Chem. Eng. J., 420(2021), art. No. 127561.

  20. L.C. Zhang, L.J. Li, H.M. Rui, et al., Lithium recovery from effluent of spent lithium battery recycling process using solvent extraction, J. Hazard. Mater., 398(2020), art. No. 122840.

  21. H. Ku, Y. Jung, M. Jo, et al., Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching, J. Hazard. Mater., 313(2016), p. 138.

    Article  CAS  PubMed  Google Scholar 

  22. Y. Guo, F. Li, H.C. Zhu, G.M. Li, J.W. Huang, and W.Z. He, Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl), Waste Manage., 51(2016), p. 227.

    Article  CAS  Google Scholar 

  23. Yuliusman, R. Fajaryanto, A. Nurqomariah, and Silvia, Acid leaching and kinetics study of cobalt recovery from spent lithium-ion batteries with nitric acid, E3S Web Conf., 67(2018), art. No. 03025.

  24. P. Meshram, B.D. Pandey, and T.R. Mankhand, Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching, Chem. Eng. J., 281(2015), p. 418.

    Article  CAS  Google Scholar 

  25. X.P. Chen, H.R. Ma, C.B. Luo, and T. Zhou, Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid, J. Hazard. Mater., 326(2017), p. 77.

    Article  CAS  PubMed  Google Scholar 

  26. B. Wang, X.Y. Lin, Y.Y. Tang, Q. Wang, M.K.H. Leung, and X.Y. Lu, Recycling LiCoO2 with methanesulfonic acid for regeneration of lithium-ion battery electrode materials, J. Power Sources, 436(2019), art. No. 226828.

  27. B. Musariri, G. Akdogan, C. Dorfling, and S. Bradshaw, Evaluating organic acids as alternative leaching reagents for metal recovery from lithium ion batteries, Miner. Eng., 137(2019), p. 108.

    Article  CAS  Google Scholar 

  28. L. Yao, H.S. Yao, G.X. Xi, and Y. Feng, Recycling and synthesis of LiNi1/3Co1/3Mn1/3O2 from waste lithium ion batteries using D,L-malic acid, RSC Adv., 6(2016), No. 22, p. 17947.

    Article  CAS  Google Scholar 

  29. Yuliusman, Silvia, A. Nurqomariah, and R. Fajaryanto, Recovery of cobalt and nickel from spent lithium ion batteries with citric acid using leaching process: Kinetics study, E3S Web Conf., 67(2018), art. No. 03008.

  30. S.X. Yan, C.H. Sun, T. Zhou, R.C. Gao, and H.S. Xie, Ultrasonic-assisted leaching of valuable metals from spent lithium-ion batteries using organic additives, Sep. Purif. Technol., 257(2021), art. No. 117930.

  31. R. Gao and J.F. Wang, Recovery of cobalt from the LiNi1/3 Co1/3Mn1/3O2 cathode of waste lithium-ion batteries, Chin. J. Environ. Eng., 14(2020), No. 2, p. 506.

    Google Scholar 

  32. X.P. Chen, Y.B. Chen, T. Zhou, D.P. Liu, H. Hu, and S.Y. Fan, Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries, Waste Manage., 38(2015), p. 349.

    Article  CAS  Google Scholar 

  33. O.K. Park, Y. Cho, S.H. Lee, H.C. Yoo, H.K. Song, and J. Cho, Who will drive electric vehicles, olivine or spinel?, Energy Environ. Sci., 4(2011), No. 5, art. No. 1621.

  34. C. Peng, F.P. Liu, Z.L. Wang, B.P. Wilson, and M. Lundström, Selective extraction of lithium (Li) and preparation of battery grade lithium carbonate (Li2CO3) from spent Li-ion batteries in nitrate system, J. Power Sources, 415(2019), p. 179.

    Article  CAS  Google Scholar 

  35. L.L. Chen, Y.H. Chao, X.W. Li, et al., Engineering a tandem leaching system for the highly selective recycling of valuable metals from spent Li-ion batteries, Green Chem., 23(2021), No. 5, p. 2177.

    Article  CAS  Google Scholar 

  36. J.T. Hu, J.L. Zhang, H.X. Li, Y.Q. Chen, and C.Y. Wang, A promising approach for the recovery of high value-added metals from spent lithium-ion batteries, J. Power Sources, 351(2017), p. 192.

    Article  CAS  Google Scholar 

  37. D.Y. Wu, D.X. Wang, Z.Q. Liu, S. Rao, and K.F. Zhang, Selective recovery of lithium from spent lithium iron phosphate batteries using oxidation pressure sulfuric acid leaching system, Trans. Nonferrous Met. Soc. China, 32(2022), No. 6, p. 2071.

    Article  CAS  Google Scholar 

  38. C.Y. Yang, J.W. Wang, P. Yang, et al., Recovery of valuable metals from spent LiNi0.8Co0.1Mn0.1O2 cathode materials using compound leaching agents of sulfuric acid and oxalic acid, Sustainability, 14(2022), No. 21, art. No. 14169.

  39. J. Chen, T.C. Liu, H.L. Li, et al., A Kind of Ternary Lithium Battery Cathode Material Recycling Method, Chinese Patent, CN112063847A, 2020.

  40. Z.P. Qiu, Y.J. Zhang, P. Dong, S.B. Xia, and Y. Yao, A facile method for synthesis of LiNi0.8Co0.15Al0.05O2 cathode material, Solid State Ion., 307(2017), p. 73.

    Article  CAS  Google Scholar 

  41. D. Wang, Z.X. Wang, X.H. Li, et al., Effect of surface fluorine substitution on high voltage electrochemical performances of layered LiNi0.5Co0.2Mn0.3O2 cathode materials, Appl. Surf. Sci., 371(2016), p. 172.

    Article  CAS  Google Scholar 

  42. Y.Z. Duan, J.M. Guo, M.W. Xiang, et al., Single crystalline polyhedral LiNixMn2−xO4 as high-performance cathodes for ultralong cycling lithium-ion batteries, Solid State Ionics, 326(2018), p. 100.

    Article  CAS  Google Scholar 

  43. T. Chen, X. Li, H. Wang, et al., The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material, J. Power Sources, 374(2018), p. 1.

    Article  CAS  Google Scholar 

  44. Y.Y. Wang, T.Y. Wang, L.J. Wu, et al., Recovery of valuable metals from spent ternary Li-ion batteries: Dissolution with amidosulfonic acid and D, Hydrometallurgy, 190(2019), art. No. 105162.

Download references

Acknowledgements

This work was financially supported by the Young Scientists Fund of the National Natural Science Foundation of China (Nos. 52104395 and 52304365), the Science and Technology Planning Project of Guangzhou, China (Nos. 202102021080 and 2024A04J10006), the National Key R&D Program of China (No. 2021YFC2902605), the Natural Science Foundation of Guangdong Province, China (Nos. 2023A1515030145 and 2023A1515011847).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongxing Wang or Xiaohui Tu.

Ethics declarations

All the authors have no financial or commercial conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Wang, D., Rao, S. et al. Selective leaching of lithium from spent lithium-ion batteries using sulfuric acid and oxalic acid. Int J Miner Metall Mater 31, 688–696 (2024). https://doi.org/10.1007/s12613-023-2741-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2741-3

Keywords

Navigation