Skip to main content
Log in

Effect of ball milling time on the microstructure and compressive properties of the Fe-Mn-Al porous steel

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

In the present work, Fe-Mn-Al-C powder mixtures were manufactured by elemental powders with different ball milling time, and the porous high-Mn and high-Al steel was fabricated by powder sintering. The results indicated that the powder size significantly decreased, and the morphology of the Fe powder tended to be increasingly flat as the milling time increased. However, the prolonged milling duration had limited impact on the phase transition of the powder mixture. The main phases of all the samples sintered at 640°C were α-Fe, α-Mn and Al, and a small amount of Fe2Al5 and Al8Mn5. When the sintering temperature increased to 1200°C, the phase composition was mainly comprised of γ-Fe and α-Fe. The weight loss fraction of the sintered sample decreased with milling time, i.e., 8.3wt% after 20 h milling compared to 15.3wt% for 10 h. The Mn depletion region (MDR) for the 10, 15, and 20 h milled samples was about 780, 600, and 370 µm, respectively. The total porosity of samples sintered at 640°C decreased from ∼46.6vol% for the 10 h milled powder to ∼44.2vol% for 20 h milled powder. After sintering at 1200°C, the total porosity of sintered samples prepared by 10 and 20 h milled powder was ∼58.3vol% and ∼51.3vol%, respectively. The compressive strength and ductility of the 1200°C sintered porous steel increased as the milling time increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.C. Kaya, P. Zaslansky, M. Ipekoglu, and C. Fleck, Strain hardening reduces energy absorption efficiency of austenitic stainless steel foams while porosity does not, Mater. Des., 143(2018), p. 297.

    Article  CAS  Google Scholar 

  2. Z.G. Xu, J.H. Du, C. Zhuang, S.Y. Huang, C.B. Wang, and Q. Shen, Evolution of aluminum particle-involved phase transformation and pore structure in an elemental Fe-Mn-Al-C powder compact during vacuum sintering, Vacuum, 175(2020), p. 109289.

    Article  CAS  Google Scholar 

  3. M. Su, Q. Zhou, and H. Wang, Mechanical properties and constitutive models of foamed steels under monotonic and cyclic loading, Constr. Build. Mater., 231(2020), p. 116959.

    Article  CAS  Google Scholar 

  4. Z.G. Xu, J.R. Liang, Y.M. Chen, W.J. Li, C.B. Wang, and Q. Shen, Sintering of a porous steel with high-Mn and high-Al content in vacuum, Vacuum, 196(2022), p. 110746.

    Article  CAS  Google Scholar 

  5. I. Mutlu and E. Oktay, Corrosion behaviour and microstructure evolution of 17-4 PH stainless steel foam, Corros. Rev., 30(2012), No. 3–4, p. 125.

    CAS  Google Scholar 

  6. S. Bobaru, V. Rico-Gavira, A. García-Valenzuela, C. López-Santos, and A.R.González-Elipe, Electron beam evaporated vs. magnetron sputtered nanocolumnar porous stainless steel: Corrosion resistance, wetting behavior and anti-bacterial activity, Mater. Today Commun., 31(2022), p. 103266.

    Article  CAS  Google Scholar 

  7. X.Q. Ni, D.C. Kong, Y. Wen, et al., Anisotropy in mechanical properties and corrosion resistance of 316L stainless steel fabricated by selective laser melting, Int. J. Miner. Metall. Mater., 26(2019), No. 3, p. 319.

    Article  CAS  Google Scholar 

  8. A. Rabiei, K. Karimpour, D. Basu, and M. Janssens, Steel-steel composite metal foam in simulated pool fire testing, Int. J. Therm. Sci., 153(2020), p. 106336.

    Article  Google Scholar 

  9. C.H. Wang, F.C. Jiang, S.Q. Shao, T.M. Yu, and C.H. Guo, Acoustic properties of 316L stainless steel hollow sphere composites fabricated by pressure casting, Metals, 10(2020), No. 8, p. 1047.

    Article  Google Scholar 

  10. X.B. Xu, P.S. Liu, G.F. Chen, and C.P. Li, Sound absorption performance of highly porous stainless steel foam with reticular structure, Met. Mater. Int., 27(2021), No. 9, p. 3316.

    Article  CAS  Google Scholar 

  11. H. Jain, R. Kumar, G. Gupta, and D.P. Mondal, Microstructure, mechanical and EMI shielding performance in open cell austenitic stainless steel foam made through PU foam template, Mater. Chem. Phys., 241(2020), p. 122273.

    Article  CAS  Google Scholar 

  12. T.Y. Lim, W. Zhai, X. Song, et al., Effect of slurry composition on the microstructure and mechanical properties of SS316L open-cell foam, Mater. Sci. Eng. A, 772(2020), p. 138798.

    Article  CAS  Google Scholar 

  13. Y. Guo, M.C. Zhao, B. Xie, et al., In vitro corrosion resistance and antibacterial performance of novel Fe-xCu biomedical alloys prepared by selective laser melting, Adv. Eng. Mater., 23(2021), No. 4, p. 2001000.

    Article  CAS  Google Scholar 

  14. S. Yiatros, O. Marangos, R.A. Votsis, and F.P. Brennan, Compressive properties of granular foams of adhesively bonded steel hollow sphere blocks, Mech. Res. Commun., 94(2018), p. 13.

    Article  Google Scholar 

  15. H. Sazegaran and S.M.M. Nezhad, Cell morphology, porosity, microstructure and mechanical properties of porous Fe-C-P alloys, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 257.

    Article  CAS  Google Scholar 

  16. C. Mapelli, D. Mombelli, A. Gruttadauria, S. Barella, and E.M. Castrodeza, Performance of stainless steel foams produced by infiltration casting techniques, J. Mater. Process. Technol., 213(2013), No. 11, p. 1846.

    Article  CAS  Google Scholar 

  17. K. Alvarez, K. Sato, S.K. Hyun, and H. Nakajima, Fabrication and properties of Lotus-type porous nickel-free stainless steel for biomedical applications, Mater. Sci. Eng. C, 28(2008), No. 1, p. 44.

    Article  CAS  Google Scholar 

  18. C. Garcia-Cabezon, C. Garcia-Hernandez, M.L. Rodriguez-Mendez, and F. Martin-Pedrosa, A new strategy for corrosion protection of porous stainless steel using polypyrrole films, J. Mater. Sci. Technol., 37(2020), p. 85.

    Article  Google Scholar 

  19. M. Mokhtari, T. Wada, C. Le Bourlot, et al., Corrosion resistance of porous ferritic stainless steel produced by liquid metal dealloying of Incoloy 800, Corros. Sci., 166(2020), No. 7, p. 108468.

    Article  CAS  Google Scholar 

  20. Y.B. Ren, J. Li, and K. Yang, Preliminary study on porous high-manganese 316L stainless steel through physical vacuum dealloying, Acta Metall. Sin., 30(2017), No. 8, p. 731.

    Article  CAS  Google Scholar 

  21. D.C. Kong, X.Q. Ni, C.F. Dong, et al., Anisotropy in the microstructure and mechanical property for the bulk and porous 316L stainless steel fabricated via selective laser melting, Mater. Lett., 235(2019), p. 1.

    Article  CAS  Google Scholar 

  22. Y. Zhu, G.L. Lin, M.M. Khonsari, J.H. Zhang, and H.Y. Yang, Material characterization and lubricating behaviors of porous stainless steel fabricated by selective laser melting, J. Mater. Process. Technol., 262(2018), p. 41.

    Article  CAS  Google Scholar 

  23. H.Y. Chen, D.D. Gu, Q. Ge, et al., Role of laser scan strategies in defect control, microstructural evolution and mechanical properties of steel matrix composites prepared by laser additive manufacturing, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 462.

    Article  CAS  Google Scholar 

  24. K. Li, J.B. Zhan, T.B. Yang, et al., Homogenization timing effect on microstructure and precipitation strengthening of 17-4PH stainless steel fabricated by laser powder bed fusion, Addit. Manuf., 52(2022), art. No. 102672.

  25. Z.Y. Liu, S.J. Xu, B.L. Xiao, P. Xue, W.G. Wang, and Z.Y. Ma, Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites, Composites Part A, 43(2012), No. 12, p. 2161.

    Article  CAS  Google Scholar 

  26. F. Ghadami, A.S.R. Aghdam, and S. Ghadami, Characterization of MCrAlY/nano-Al2O3 nanocomposite powder produced by high-energy mechanical milling as feedstock for high-velocity oxygen fuel spraying deposition, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1534.

    Article  CAS  Google Scholar 

  27. S.A. Hewitt and K.A. Kibble, Effects of ball milling time on the synthesis and consolidation of nanostructured WC-Co composites, Int. J. Refract. Met. Hard Mater., 27(2009), No. 6, p. 937.

    Article  CAS  Google Scholar 

  28. A. Nouri, P.D. Hodgson, and C. Wen, Effect of ball-milling time on the structural characteristics of biomedical porous Ti-Sn-Nb alloy, Mater. Sci. Eng. C, 31(2011), No. 5, p. 921.

    Article  CAS  Google Scholar 

  29. R. Raimundo, R. Reinaldo, N. Câmara, et al., Al2O3-10wt% Fe composite prepared by high energy ball milling: Structure and magnetic properties, Ceram. Int., 47(2021), No. 1, p. 984.

    Article  CAS  Google Scholar 

  30. C. Garcia-Cabezon, Y. Blanco, M. Rodriguez-Mendez, and F. Martin-Pedrosa, Characterization of porous nickel-free austenitic stainless steel prepared by mechanical alloying, J. Alloys Compd., No.(2017), p. 46.

  31. N. Bekoz and E. Oktay, The role of pore wall microstructure and micropores on the mechanical properties of Cu-Ni-Mo based steel foams, Mater. Sci. Eng. A, 612(2014), p. 387.

    Article  CAS  Google Scholar 

  32. G. Castro, S.R. Nutt, and X.W. Chen, Compression and low-velocity impact behavior of aluminum syntactic foam, Mater. Sci. Eng. A, 578(2013), p. 222.

    Article  CAS  Google Scholar 

  33. K. Kato, A. Yamamoto, S. Ochiai, et al., Cytocompatibility and mechanical properties of novel porous 316L stainless steel, Mater. Sci. Eng. C, 33(2013), No. 5, p. 2736.

    Article  CAS  Google Scholar 

  34. D.P. Mondal, H. Jain, S. Das, and A.K. Jha, Stainless steel foams made through powder metallurgy route using NH4HCO3 as space holder, Mater. Des., 88(2015), p. 430.

    Article  CAS  Google Scholar 

  35. K.G. Chin, H.J. Lee, J.H. Kwak, J.Y. Kang, and B.J. Lee, Thermodynamic calculation on the stability of (Fe, Mn)3AlC carbide in high aluminum steels, J. Alloys Compd., 505(2010), No. 1, p. 217.

    Article  CAS  Google Scholar 

  36. Z.G. Xu, J.R. Liang, and J.H. Du, The microstructure and compressive properties of a sintered Fe-Mn-Al porous steel produced by blended elemental powder mixture, Int. J. Mod. Phys. B, 36(2022), No. 12–13, p. 2240058.

    Article  CAS  Google Scholar 

  37. C.B. Zhuang, Z.G. Xu, S.Y. Huang, Y. Xia, C.B. Wang, and Q. Shen, In situ synthesis of a porous high-Mn and high-Al steel by a novel two-step pore-forming technique in vacuum sintering, J. Mater. Sci. Technol., 39(2020), p. 82.

    Article  CAS  Google Scholar 

  38. L.H. Zhou, Z. Li, S.S. Wang, et al., Calculation of phase equilibria in Al-Fe-Mn ternary system involving three new ternary intermetallic compounds, Adv. Manuf., 6(2018), No. 2, p. 247.

    Article  CAS  Google Scholar 

  39. A.T. Phan, M.K. Paek, and Y.B. Kang, Phase equilibria and thermodynamics of the Fe—Al—C system: Critical evaluation, experiment and thermodynamic optimization, Acta Mater., 79(2014), p. 1.

    Article  CAS  Google Scholar 

  40. B. Hallstedt, A.V. Khvan, B.B. Lindahl, M. Selleby, and S. Liu, PrecHiMn-4—A thermodynamic database for high-Mn steels, Calphad, 56(2017), p. 49.

    Article  CAS  Google Scholar 

  41. W.S. Zheng, S. He, M. Selleby, et al., Thermodynamic assessment of the Al—C—Fe system, Calphad, 58(2017), p. 34.

    Article  CAS  Google Scholar 

  42. M.S. Kim and Y.B. Kang, Development of thermodynamic database for high Mn-high Al steels: Phase equilibria in the Fe—Mn—Al—C system by experiment and thermodynamic modeling, Calphad, 51(2015), p. 89.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2021YFB3802300), the National Natural Science Foundation of China (No. 51804239), and Guangdong Major Project of Basic and Applied Basic Research, China (No. 2021B0301030001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Xu.

Additional information

Conflict of Interest

The authors declare no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, L., Xu, Z., Qi, Y. et al. Effect of ball milling time on the microstructure and compressive properties of the Fe-Mn-Al porous steel. Int J Miner Metall Mater 30, 917–929 (2023). https://doi.org/10.1007/s12613-022-2568-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2568-3

Keywords

Navigation