Skip to main content
Log in

Strength and ductility synergy of Nb-alloyed Ni0.6CoFe1.4 alloys

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Designing strong, yet ductile, and body-centered cubic (BCC) medium-entropy alloys (MEAs) remains to be a challenge nowadays. In this study, the strength—ductility trade-off of Ni0.6CoFe1.4 MEAs was tackled via introducing a BCC + face-centered cubic (FCC) dual-phase microstructure. Ni0.6CoFe1.4Nbx (x = 0, 0.05, 0.08, 0.10, and 0.15, in molar ratio) MEAs were prepared using vacuum induction melting. Results show that the new alloy is composed of BCC plus FCC dual phases featuring a network-like structure, and the BCC phase is the main phase in this alloy system. Moreover, the Nb0.10 MEA shows high strength and respectable tensile ductility, representing the best combination of the strength and fracture elongation among the alloys studied here. The remarkable strength of the Nb0.10 MEA is attributed to the combined effect of the solid solution strengthening, the precipitation hardening effect and the interface strengthening effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Shojaei, G.R. Khayati, and E. Darezereshki, Review of electrodeposition methods for the preparation of high-entropy alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1683.

    Article  CAS  Google Scholar 

  2. E.P. George, D. Raabe, and R.O. Ritchie, High-entropy alloys, Nat. Rev. Mater., 4(2019), No. 8, p. 515.

    Article  CAS  Google Scholar 

  3. C.Y. Cheng, Y.C. Yang, Y.Z. Zhong, Y.Y. Chen, T. Hsu, and J.W. Yeh, Physical metallurgy of concentrated solid solutions from low-entropy to high-entropy alloys, Curr. Opin. Solid State Mater. Sci., 21(2017), No. 6, p. 299.

    Article  CAS  Google Scholar 

  4. W. Jiang, Y.T. Zhu, and Y.H. Zhao, Mechanical properties and deformation mechanisms of heterostructured high-entropy and medium-entropy alloys: A review, Front. Mater, 8(2022), p. 792359.

    Article  Google Scholar 

  5. N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, and M.A. Tikhonovsky, Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy, Mater. Lett., 142(2015), p. 153.

    Article  CAS  Google Scholar 

  6. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Refractory high-entropy alloys, Intermetallics, 18(2010), No. 9, p. 1758.

    Article  CAS  Google Scholar 

  7. B. Gorr, M. Azim, H.J. Christ, T. Mueller, D. Schliephake, and M. Heilmaier, Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys, J. Alloys Compd., 624(2015), p. 270.

    Article  CAS  Google Scholar 

  8. F. He, D. Chen, B. Han, et al., Design of D022 superlattice with superior strengthening effect in high entropy alloys, Acta Mater., 167(2019), p. 275.

    Article  CAS  Google Scholar 

  9. W.P. Li, T.H. Chou, T. Yang, et al., Design of ultrastrong but ductile medium-entropy alloy with controlled precipitations and heterogeneous grain structures, Appl. Mater. Today, 23(2021), art. No. 101037.

  10. T. Xiang, Z.Y. Cai, P. Du, K. Li, Z.W. Zhang, and G.Q. Xie, Dual phase equal-atomic NbTaTiZr high-entropy alloy with ultra-fine grain and excellent mechanical properties fabricated by spark plasma sintering, J. Mater. Sci. Technol., 90(2021), p. 150.

    Article  CAS  Google Scholar 

  11. K.R. Lim, H.J. Kwon, J.H. Kang, J.W. Won, and Y.S. Na, A novel ultra-high-strength duplex Al-Co-Cr-Fe-Ni high-entropy alloy reinforced with body-centered-cubic ordered-phase particles, Mater. Sci. Eng. A, 771(2020), art. No. 138638.

  12. Y. Ji, L. Zhang, X. Lu, et al., Microstructural optimization of FexCrNiAl0.5Ti0,5 high entropy alloys toward high ductility, Appl. Phys. Lett., 119(2021), No. 14, art. No. 141903.

  13. A. Fu, B. Liu, S.H. Xu, et al., Mechanical properties and microstructural evolution of a novel (FeCoNi)86.93Al6.17Ti6.9 medium entropy alloy fabricated via powder metallurgy technique, J. Alloys Compd., 860(2021), art. No. 158460.

  14. N. Malatji, A.P.I. Popoola, T. Lengopeng, and S. Pityana, Effect of Nb addition on the microstructural, mechanical and electrochemical characteristics of AlCrFeNiCu high-entropy alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1332.

    Article  CAS  Google Scholar 

  15. H. Liang, H.W. Yao, D.X. Qiao, et al., Microstructures and wear resistance of AlCrFeNi2W0.2Nbx high-entropy alloy coatings prepared by laser cladding, J. Therm. Spray Tech., 28(2019), No. 6, p. 1318.

    Article  CAS  Google Scholar 

  16. R. Li, J. Ren, G.J. Zhang, et al., Novel (CoFe2NiV0.5Mo0.2)100−xNbx eutectic high-entropy alloys with excellent combination of mechanical and corrosion properties, Acta Metall. Sin. Engl. Lett., 33(2020), No. 8, p. 1046.

    Article  CAS  Google Scholar 

  17. W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, and C.T. Liu, Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys, Intermetallics, 60(2015), p. 1.

    Article  Google Scholar 

  18. D.Y. Lin, N.N. Zhang, B. He, et al., Structural evolution and performance changes in FeCoCrNiAlNbx high-entropy alloy coatings cladded by laser J. Therm. Spray Technol., 26(2017), No. 8, p. 2005.

    Article  CAS  Google Scholar 

  19. Q.Q. Wei, X.D. Xu, G.M. Li, et al., A carbide-reinforced Re0.5MoNbW(TaC)0.8 eutectic high-entropy composite with outstanding compressive properties, Scripta Mater., 200(2021), art. No. 113909.

  20. B.L. Bramfitt, The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron, Metall. Trans., 1(1970), No. 7, p. 1987.

    Article  CAS  Google Scholar 

  21. K.X. Zhou, J.J. Li, L.L. Wang, H.O. Yang, Z.J. Wang, and J.C. Wang, Direct laser deposited bulk CoCrFeNiNbx high entropy alloys, Intermetallics, 114(2019), art. No. 106592.

  22. P.P. Li, A.D. Wang, and C.T. Liu, Composition dependence of structure, physical and mechanical properties of FeCoNi (MnAl)x high entropy alloys, Intermetallics, 87(2017), p. 21.

    Article  CAS  Google Scholar 

  23. Y.H. Guo, M.Y. Li, P. Li, et al., Microstructure and mechanical properties of oxide dispersion strengthened FeCoNi concentrated solid solution alloys, J. Alloys Compd., 820(2020), art. No. 153104.

  24. H. Wu, S.R. Huang, S.M. Zhao, et al., Microstructures and mechanical properties of in-situ FeCrNiCu high entropy alloy matrix composites reinforced with NbC particles, Intermetallics, 127(2020), art. No. 106983.

  25. J.F. Zhang, T. Jia, H. Qiu, H.G. Zhu, and Z.H. Xie, Effect of cooling rate upon the microstructure and mechanical properties of in situ TiC reinforced high entropy alloy CoCrFeNi, J. Mater. Sci. Technol., 42(2020), p. 122.

    Article  CAS  Google Scholar 

  26. Y.C. Zhang, Y.R. Yang, J.F. Zhang, J.W. Li, H.G. Zhu, and Z.H. Xie, Effect of Ti and B additions on the microstructure and properties of FeCoCrNi high entropy alloys prepared by hot pressing, Powder Metall., 65(2022), No. 4, p. 347.

    Article  CAS  Google Scholar 

  27. J.W. Yeh, S.K. Chen, S.J. Lin, et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299.

    Article  CAS  Google Scholar 

  28. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater., 10(2008), No. 6, p. 534.

    Article  CAS  Google Scholar 

  29. S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys., 109(2011), No. 10, art. No. 103505.

  30. W.H. Liu, Y. Wu, J.Y. He, Y. Zhang, C.T. Liu, and Z.P. Lu, The phase competition and stability of high-entropy alloys, JOM, 66(2014), No. 10, p. 1973.

    Article  CAS  Google Scholar 

  31. S.H. Kuang, F. Zhou, W.C. Liu, and Q.B. Liu, Al2O3/MC particles reinforced MoFeCrTiWNbx high-entropy-alloy coatings prepared by laser cladding, Surf. Eng., 38(2022), No. 2, p. 158.

    Article  CAS  Google Scholar 

  32. B. Chanda and J. Das, Composition dependence on the evolution of nanoeutectic in CoCrFeNiNbx (0.45≤x≤0.65) high entropy alloys, Adv. Eng. Mater., 20(2018), No. 4, art. No. 1700908.

  33. A. Takeuchi and A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans., 46(2005), No. 12, p. 2817.

    Article  CAS  Google Scholar 

  34. Q.X. Nie, H. Liang, D.X. Qiao, Z.X. Qi, and Z.Q. Cao, Microstructures and mechanical properties of multi-component AlxCrFe2Ni2Mo0.2 high-entropy alloys, Acta Metall. Sin. Engl. Lett., 33(2020), No. 8, p. 1135.

    Article  CAS  Google Scholar 

  35. M. Zhang, J.X. Hou, H.J. Yang, et al., Tensile strength prediction of dual-phase Al0.6CoCrFeNi high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1341.

    Article  Google Scholar 

  36. R. Fan, L.P. Wang, L.L. Zha, et al., Synergistic effect of Nb and Mo alloying on the microstructure and mechanical properties of CoCrFeNi high entropy alloy, Mater. Sci. Eng. A, 829(2022), art. No. 142153.

  37. Y. Dong, X.X. Gao, Y.P. Lu, T.M. Wang, and T.J. Li, A multi-component AlCrFe2Ni2 alloy with excellent mechanical properties, Mater. Lett., 169(2016), p. 62.

    Article  CAS  Google Scholar 

  38. J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, and Z.Q. Hu, Microstructures and compressive properties of multicomponent AlCoCrFeNiMox alloys, Mater. Sci. Eng. A, 527(2010), No. 26, p. 6975.

    Article  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (No. 51571118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heguo Zhu.

Additional information

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Zhu, H. & Xie, Z. Strength and ductility synergy of Nb-alloyed Ni0.6CoFe1.4 alloys. Int J Miner Metall Mater 30, 707–714 (2023). https://doi.org/10.1007/s12613-022-2567-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2567-4

Keywords

Navigation