Skip to main content

Advertisement

Log in

Chitosan derived carbon membranes as protective layers on zinc anodes for aqueous zinc batteries

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Aqueous zinc batteries with low cost and inherent safety are considered to be the most promising energy storage devices. However, they suffer from poor cycling stability and low coulombic efficiencies caused by the adverse zinc dendrites on the anodes during the discharging/charging processes. Chitosan is a kind of natural amino polysaccharide, which is rich in nitrogen and carbon. When sintered at high temperatures, carbon membranes have been achieved with excellent conductivity and graphitization degree, which could enhance the ability to induce zinc ion uniform deposition to some extent. In this work, a type of carbon membrane using chitosan as raw materials has been fabricated by sintering, and then assembled as the protect layers in aqueous zinc batteries. The results show that the samples could retain smoother surfaces when adopting the sintering temperature of 800°C, and the assembled batteries are able to achieve about 700 h at a current density of 0.25 mA·cm−2, which is far longer than those of the similar batteries without any carbon membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.Y. Feng, W.J. Peng, Z.X. Wang, et al., Review of silicon-based alloys for lithium-ion battery anodes, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1549.

    Article  CAS  Google Scholar 

  2. N. Li, S.Q. Yang, H.S. Chen, S.Q. Jiao, and W.L. Song, Mechano-electrochemical perspectives on flexible lithium-ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1019.

    Article  CAS  Google Scholar 

  3. X.H. Qin, Y.H. Du, P.C. Zhang, et al., Layered Barium vanadate nanobelts for high-performance aqueous zinc-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1684.

    Article  CAS  Google Scholar 

  4. A. Samanta and C.R. Raj, Bifunctional nitrogen-doped hybrid catalyst based on onion-like carbon and graphitic carbon encapsulated transition metal alloy nanostructure for rechargeable zinc-air battery, J. Power Sources, 455(2020), art. No. 227975.

  5. Q. Guan, Y.P. Li, X.X. Bi, et al., Dendrite-free flexible fiber-shaped Zn battery with long cycle life in water and air, Adv. Energy Mater., 9(2019), No. 41, art. No. 1901434.

  6. Z.M. Zhao, J.W. Zhao, Z.L. Hu, et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase, Energy Environ. Sci., 12(2019), No. 6, p. 1938.

    Article  CAS  Google Scholar 

  7. J.F. Parker, C.N. Chervin, I.R. Pala, et al., Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion, Science, 356(2017), No. 6336, p. 415.

    Article  CAS  Google Scholar 

  8. M. Song, H. Tan, D.L. Chao, and H.J. Fan, Recent advances in Zn-ion batteries, Adv. Funct. Mater., 28(2018), No. 41, art. No. 1802564.

  9. L.T. Kang, M.W. Cui, F.Y. Jiang, et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries, Adv. Energy Mater., 8(2018), No. 25, art. No. 1801090.

  10. Y.X. Zeng, X.Y. Zhang, R.F. Qin, et al., Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries, Adv. Mater., 31(2019), No. 36, art. No. 1903675.

  11. L.S. Wu and Y.F. Dong, Recent progress of carbon nanomaterials for high-performance cathodes and anodes in aqueous zinc ion batteries, Energy Storage Mater., 41(2021), p. 715.

    Article  Google Scholar 

  12. Y.J. Qiao, H. Zhang, Y.X. Hu, et al., A chain-like compound of Si@CNT nanostructures and MOF-derived porous carbon as an anode for Li-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1611.

    Article  CAS  Google Scholar 

  13. X.Y. Zhao, X.Q. Liang, Y. Li, Q.G. Chen, and M.H. Chen, Challenges and design strategies for high performance aqueous zinc ion batteries, Energy Storage Mater., 42(2021), p. 533.

    Article  Google Scholar 

  14. P. Akbarzadeh and N. Koukabi, Easy conversion of nitrogen-rich silk cocoon biomass to magnetic nitrogen-doped carbon nanomaterial for supporting of Palladium and its application, Appl. Organomet. Chem., 35(2021), No. 1, art. No. e6039.

  15. D.H. Tian, Z.C. Han, M.Y. Wang, and S.Q. Jiao, Direct electrochemical N-doping to carbon paper in molten LiCl-KCl-Li3N, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1687.

    Article  CAS  Google Scholar 

  16. H.Q. Tang, C. Chen, T. Liu, and Z.Y. Tang, Chitosan and chitosan oligosaccharide: Advanced carbon sources are used for preparation of N-doped carbon-coated Li2ZnTi3O8 anode material, J. Electroanal. Chem., 858(2020), art. No. 113789.

  17. Y. Zhang, S.J. Deng, Y.H. Li, et al., Anchoring MnO2 on nitrogen-doped porous carbon nanosheets as flexible arrays cathodes for advanced rechargeable Zn-MnO2 batteries, Energy Storage Mater., 29(2020), p. 52.

    Article  CAS  Google Scholar 

  18. L.S. Wu, Y. Zhang, P. Shang, Y.F. Dong, and Z.S. Wu, Redistributing Zn ion flux by bifunctional graphitic carbon nitride nanosheets for dendrite-free zinc metal anodes, J. Mater. Chem. A, 9(2021), No. 48, p. 27408.

    Article  CAS  Google Scholar 

  19. Y.L. Huang, W.Y. He, P. Zhang, and X.H. Lu, Nitrogen-doped MnO2 nanorods as cathodes for high-energy Zn-MnO2 batteries, Funct. Mater. Lett., 11(2018), No. 6, art. No. 1840006.

  20. C.P. Wu, K.X. Xie, K.X. Ren, S. Yang, and Q.H. Wang, Dendrite-free Zn anodes enabled by functional nitrogen-doped carbon protective layers for aqueous zinc-ion batteries, Dalton Trans., 49(2020), No. 48, p. 17629.

    Article  CAS  Google Scholar 

  21. H. Zhang, Y. Yang, D.S. Ren, L. Wang, and X.M. He, Graphite as anode materials: Fundamental mechanism recent progress and advances, Energy Storage Mater., 36(2021), p. 147.

    Article  Google Scholar 

  22. D.S. Ruan, K. Zou, K. Du, et al., Recycling of graphite anode from spent lithium-ion batteries for preparing Fe-N-doped carbon ORR catalyst, ChemCatChem, 13(2021), No. 8, p. 2025.

    Article  CAS  Google Scholar 

  23. H.J. Qiu, P. Du, K.L. Hu, et al., Metal and nonmetal codoped 3D nanoporous graphene for efficient bifunctional electrocatalysis and rechargeable Zn-air batteries, Adv. Mater., 31(2021), No. 19, art. No. 1900843.

  24. X. Gao, H.W. Wu, W.J. Li, et al., H+-insertion boosted α-MnO2 for an aqueous Zn-ion battery, Small, 16(2020), No. 5, art. No. 1905842.

  25. C.G. Li, X.D. Zhang, W. He, G.G. Xu, and R. Sun, Cathode materials for rechargeable zinc-ion batteries: From synthesis to mechanism and applications, J. Power Sources, 449(2020), art. No. 227596.

  26. G.Z. Li, Z.X. Huang, J.B. Chen, et al., Rechargeable Zn-ion batteries with high power and energy densities: A two-electron reaction pathway in birnessite MnO2 cathode materials, J. Mater. Chem. A, 8(2020), No. 4, p. 1975.

    Article  CAS  Google Scholar 

  27. D.L. Chao, W.H. Zhou, C. Ye, et al., An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage, Angew. Chem., 131(2019), No. 23, p. 7905.

    Article  Google Scholar 

  28. G. Marciniuk, R.T. Ferreira, A.V. Pedroso, et al., Enhancing hydrothermal formation of α-MnO2 nanoneedles over nanographite structures obtained by electrochemical exfoliation, Bull. Mater. Sci., 44(2021), No. 1, art. No. 62.

  29. G. Li, Z. Liu, Q. Huang, et al., Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects, Nat. Energy, 3(2018), No. 12, p. 1076.

    Article  CAS  Google Scholar 

  30. X.Y. Gao, W. Yin, and X.Q. Liu, Carbon nanotubes-based elecrode for Zn ion batteries, Mater. Res. Bull., 138(2021), art. No. 111246.

  31. H.R. Jiang, M.C. Wu, Y.X. Ren, W. Shyy, and T.S. Zhao, Towards a uniform distribution of zinc in the negative electrode for zinc bromine flow batteries, Appl. Energy, 213(2018), p. 366.

    Article  CAS  Google Scholar 

  32. Y.Y. Xu, P.L. Deng, G.D. Chen, et al., 2D nitrogen-doped carbon nanotubes/graphene hybrid as bifunctional oxygen electrocatalyst for long-life rechargeable Zn-air batteries, Adv. Funct. Mater., 30(2020), No. 6, art. No. 1906081.

  33. S.J. Yi, X.P. Qin, C.H. Liang, et al., Insights into KMnO4 etched N-rich carbon nanotubes as advanced electrocatalysts for Zn-air batteries, Appl. Catal. B, 264(2020), art. No. 118537.

  34. Y.Z. Liu, X.W. Chi, Q. Han, et al., α-MnO2 nanofibers/carbon nanotubes hierarchically assembled microspheres: Approaching practical applications of high-performance aqueous Zn-ion batteries, J. Power Sources, 443(2019), art. No. 227244.

  35. X.J. Yue, H.D. Liu, and P. Liu, Polymer grafted on carbon nanotubes as a flexible cathode for aqueous zinc ion batteries, Chem. Commun., 55(2019), No. 11, p. 1647.

    Article  CAS  Google Scholar 

  36. P. Tan, B. Chen, H.R. Xu, et al., Nanoporous NiO/Ni(OH)2 plates incorporated with carbon nanotubes as active materials of rechargeable hybrid zinc batteries for improved energy efficiency and high-rate capability, J. Electrochem. Soc., 165(2018), No. 10, p. A2119.

    Article  CAS  Google Scholar 

  37. J. Yu, J.D. Luo, H. Zhang, Z. Zhang, J.C. Wei, and Z.Y. Yang, Renewable agaric-based hierarchically porous cocoon-like MnO/Carbon composites enable high-energy and high-rate Li-ion batteries, Electrochim. Acta, 322(2019), art. No. 134757.

  38. X. Wu, S. Chen, Y. Feng, et al., Microwave-assisted synthesis of carbon nanotubes threaded core-shell CoPx/Co-Nx-C@CNT and its performance as an efficient bifunctional oxygen catalyst for the rechargeable zinc-air battery, Mater. Today Phys., 9(2019), art. No. 100132.

  39. T.F. Li, M. Li, M.R. Zhang, et al., Immobilization of Fe3N nan-oparticles within N-doped carbon nanosheet frameworks as a high-efficiency electrocatalyst for oxygen reduction reaction in Zn-air batteries, Carbon, 153(2019), p. 364.

    Article  CAS  Google Scholar 

  40. C.X. Liu, R. Li, W.J. Liu, G.Z. Shen, and D. Chen, Chitosan-assisted fabrication of a network C@V2O5 cathode for high-performance Zn-ion batteries, ACS Appl. Mater. Interfaces, 13(2021), No. 31, p. 37194.

    Article  CAS  Google Scholar 

  41. Y. Gao, X.T. Qiu, X.L. Wang, X.C. Chen, A.Q. Gu, and Z.L. Yu, Nitrogen-doped porous carbon microspheres for high-rate anode material in lithium-ion batteries, Nanotechnology, 31(2020), No. 15, art. No. 155702.

  42. K. Lu, H. Zhang, B. Song, W. Pan, H.Y. Ma, and J.T. Zhang, Sulfur and nitrogen enriched graphene foam scaffolds for aqueous rechargeable zinc-iodine battery, Electrochim. Acta, 296(2019), p. 755.

    Article  CAS  Google Scholar 

  43. M. Shu, X. Li, L.Q. Duan, M.T. Zhu, and X. Xin, Nitrogen-doped polymer nanofibers decorated with Co nanoparticles for uniform lithium nucleation/growth in lithium metal batteries, Nanoscale, 12(2020), No. 16, p. 8819.

    Article  CAS  Google Scholar 

  44. J. Conder, C. Vaulot, C. Marino, C. Villevieille, and C.M. Ghimbeu, Chitin and chitosan—Structurally related precursors of dissimilar hard carbons for Na-ion battery, ACS Appl. Energy Mater., 2(2019), No. 7, p. 4841.

    Article  CAS  Google Scholar 

  45. D.D. Yin, C. Han, X.J. Bo, J. Liu, and L.P. Guo, Prussian blue analogues derived iron-cobalt alloy embedded in nitrogen-doped porous carbon nanofibers for efficient oxygen reduction reaction in both alkaline and acidic solutions, J. Colloid Interface Sci., 533(2019), p. 578.

    Article  CAS  Google Scholar 

  46. J. Zhou, H. Wang, W. Yang, S.J. Wu, and W. Han, Sustainable nitrogen-rich hierarchical porous carbon nest for supercapacitor application, Carbohydr. Polym., 198(2018), p. 364.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21571110), the NSF of Zhejiang province, China (No. LY18B010003), and the Ningbo Municipal Natural Science Foundation (No. 2022J096).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junshan Han or Xing Li.

Additional information

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wei, Z., Xia, Y. et al. Chitosan derived carbon membranes as protective layers on zinc anodes for aqueous zinc batteries. Int J Miner Metall Mater 30, 621–629 (2023). https://doi.org/10.1007/s12613-022-2525-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2525-1

Keywords

Navigation