Skip to main content
Log in

In-situ grown NiCo bimetal anchored on porous straw-derived biochar composites with boosted microwave absorption properties

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

With the gradually increasing protection awareness about electromagnetic pollution, the demand for absorbing materials with renewability and environmental friendliness has attracted widespread attention. In this work, composites consisting of straw-derived biochar combined with NiCo alloy were successfully fabricated through high-temperature carbonization and subsequent hydrothermal reaction. The electromagnetic parameters of the porous biocarbon/NiCo composites can be effectively modified by altering their NiCo content, and their improved absorbing performance can be attributed to the synergy effect of magnetic-dielectric characteristics. An exceptional reflection loss of −27.0 dB at 2.2 mm thickness and an effective absorption bandwidth of 4.4 GHz (11.7–16.1 GHz) were achieved. These results revealed that the porous biocarbon/NiCo composites could be used as a new generation absorbing material because of their low density, light weight, excellent conductivity, and strong absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Zhou, J.H. Chen, M. Liu, P. Jiang, B. Li, and X.M. Hou, Microwave absorption properties of SiC@SiO2@Fe3O4 hybrids in the 2–18 GHz range, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 804.

    Article  CAS  Google Scholar 

  2. Y.F. Zhang, Z. Ji, K. Chen, C.C. Jia, S.W. Yang, and M.Y. Wang, Preparation and radar-absorbing properties of Al2O3/TiO2/Fe2O3/Yb2O3 composite powder, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 216.

    Article  Google Scholar 

  3. H.L. Lv, Z.H. Yang, B. Liu, et al., A flexible electromagnetic wave-electricity harvester, Nat. Commun., 12(2021), No. 1, p. 1.

    Article  Google Scholar 

  4. Y. Li, Y.C. Qing, Y.F. Zhou, et al., Unique nanoporous structure derived from Co3O4-C and Co/CoO-C composites towards the ultra-strong electromagnetic absorption, Composites Part B, 213(2021), art. No. 108731.

  5. B. Zhao, X.Q. Guo, W.Y. Zhao, et al., Yolk-shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties, ACS Appl. Mater. Interfaces, 8(2016), No. 42, p. 28917.

    Article  CAS  Google Scholar 

  6. Q.H. Liu, Q. Cao, H. Bi, et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption, Adv. Mater., 28(2016), No. 3, p. 486.

    Article  CAS  Google Scholar 

  7. J.W. Liu, R.C. Che, H.J. Chen, et al., Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells, Small, 8(2012), No. 8, p. 1214.

    Article  CAS  Google Scholar 

  8. B. Zhao, Y. Li, Q.W. Zeng, et al., Galvanic replacement reaction involving core-shell magnetic chains and orientation-tunable microwave absorption properties, Small, 16(2020), No. 40, art. No. 2003502.

  9. B. Zhao, X.Q. Guo, W.Y. Zhao, et al., Facile synthesis of yolk-shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties, Nano Res., 10(2017), No. 1, p. 331.

    Article  CAS  Google Scholar 

  10. R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, and X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes, Adv. Mater., 16(2004), No. 5, p. 401.

    Article  CAS  Google Scholar 

  11. B. Zhao, Y. Li, H.Y. Ji, et al., Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption, Carbon, 176(2021), p. 411.

    Article  CAS  Google Scholar 

  12. N. Zhang, Y. Huang, M.Y. Wang, X.D. Liu, and M. Zong, Design and microwave absorption properties of thistle-like CoNi enveloped in dielectric Ag decorated graphene composites, J. Colloid Interface Sci., 534(2019), p. 110.

    Article  CAS  Google Scholar 

  13. H. Wang, Y.Y. Dai, W.J. Gong, et al., Broadband microwave absorption of CoNi@C nanocapsules enhanced by dual dielectric relaxation and multiple magnetic resonances, Appl. Phys. Lett., 102(2013), No. 22, art. No. 223113.

  14. Z.C. Lou, Q.Y. Wang, U.I. Kara, et al., Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers, Nano Micro Lett., 14(2021), No. 1, p. 1.

    Google Scholar 

  15. Y. Liu, Z.R. Jia, Q.Q. Zhan, Y.H. Dong, Q.M. Xu, and G.L. Wu, Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption, Nano Res., 15(2022), No. 6, p. 5590.

    Article  CAS  Google Scholar 

  16. Y. Wu, R.W. Shu, Z.Y. Li, et al., Design and electromagnetic wave absorption properties of reduced graphene oxide/multi-walled carbon nanotubes/nickel ferrite ternary nanocomposites, J. Alloys Compd., 784(2019), p. 887.

    Article  CAS  Google Scholar 

  17. H. Sun, R.C. Che, X. You, et al., Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities, Adv. Mater., 26(2014), No. 48, p. 8120.

    Article  CAS  Google Scholar 

  18. B. Zhao, J.S. Deng, C.X. Zhao, et al., Achieving wideband microwave absorption properties in PVDF nanocomposite foams with an ultra-low MWCNT content by introducing a microcellular structure, J. Mater. Chem. C, 8(2020), No. 1, p. 58.

    Article  CAS  Google Scholar 

  19. T.S. Liu, N. Liu, S.R. Zhai, et al., Tailor-made core/shell/shelllike Fe3O4@SiO2@PPy composites with prominent microwave absorption performance, J. Alloys Compd., 779(2019), p. 831.

    Article  CAS  Google Scholar 

  20. X.Y. Wu, B.Y. Han, H.B. Zhang, et al., Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding, Chem. Eng. J., 381(2020), art. No. 122622.

  21. X.L. Cao, Z.R. Jia, D.Q. Hu, and G.L. Wu, Synergistic construction of three-dimensional conductive network and double heterointerface polarization via magnetic FeNi for broadband microwave absorption, Adv. Compos. Hybrid Mater., 5(2022), No. 2, p. 1030.

    Article  CAS  Google Scholar 

  22. M.A. Aslam, W. Ding, S. ur Rehman, et al., Low cost 3D biocarbon foams obtained from wheat straw with broadened bandwidth electromagnetic wave absorption performance, Appl. Surf. Sci., 543(2021), art. No. 148785.

  23. Y.Y. Wang, Z.H. Zhou, J.L. Zhu, et al., Low-temperature carbonized carbon nanotube/cellulose aerogel for efficient microwave absorption, Composites Part B, 220(2021), art. No. 108985.

  24. H.Q. Zhao, Y. Cheng, H.L. Lv, B.S. Zhang, G. Ji, and Y.W. Du, Achieving sustainable ultralight electromagnetic absorber from flour by turning surface morphology of nanoporous carbon, ACS Sustain. Chem. Eng., 6(2018), No. 11, p. 15850.

    Article  CAS  Google Scholar 

  25. X.X. Sun, M.L. Yang, S. Yang, et al., Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure, Small, 15(2019), No. 43, art. No. 1902974.

  26. G.J. Gou, F.B. Meng, H.G. Wang, M. Jiang, W. Wei, and Z.W. Zhou, Wheat straw-derived magnetic carbon foams: In-situ preparation and tunable high-performance microwave absorption, Nano Res., 12(2019), No. 6, p. 1423.

    Article  CAS  Google Scholar 

  27. H.Q. Zhao, Y. Cheng, J.N. Ma, Y.N. Zhang, G.B. Ji, and Y.W. Du, A sustainable route from biomass cotton to construct lightweight and high-performance microwave absorber, Chem. Eng. J., 339(2018), p. 432.

    Article  CAS  Google Scholar 

  28. H.Q. Zhao, Y. Cheng, H.L. Lv, G.B. Ji, and Y.W. Du, A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption, Carbon, 142(2019), p. 245.

    Article  CAS  Google Scholar 

  29. P.F. Yin, L.M. Zhang, Y.Y. Jiang, et al., Recycling of waste straw in sorghum for preparation of biochar/(Fe,Ni) hybrid aimed at significant electromagnetic absorbing of low-frequency band, J. Mater. Res. Technol., 9(2020), No. 6, p. 14212.

    Article  CAS  Google Scholar 

  30. J. Cui, X.H. Wang, L. Huang, C.W. Zhang, Y. Yuan, and Y.B. Li, Environmentally friendly bark-derived Co-Doped porous carbon composites for microwave absorption, Carbon, 187(2022), p. 115.

    Article  CAS  Google Scholar 

  31. B. Zhao, G. Shao, B.B. Fan, W.Y. Zhao, Y.J. Xie, and R. Zhang, Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties, J. Mater. Chem. A, 3(2015), No. 19, p. 10345.

    Article  CAS  Google Scholar 

  32. J. Feng, F.Z. Pu, Z.X. Li, X.H. Li, X.Y. Hu, and J.T. Bai, Inter-facial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber, Carbon, 104(2016), p. 214.

    Article  CAS  Google Scholar 

  33. L.L. Liang, Z.Q. Zhang, F. Song, et al., Ultralight, flexible carbon hybrid aerogels from bacterial cellulose for strong microwave absorption, Carbon, 162(2020), p. 283.

    Article  CAS  Google Scholar 

  34. H.L. Lv, Z.H. Yang, H.B. Xu, L.Y. Wang, and R.B. Wu, An electrical switch-driven flexible electromagnetic absorber, Adv. Funct. Mater., 30(2020), No. 4, art. No. 1907251.

  35. Y.C. Qing, Y. Li, W. Li, and H.Y. Yao, Ti3+ self-doped dark TiO2 nanoparticles with tunable and unique dielectric properties for electromagnetic applications, J. Mater. Chem. C, 9(2021), No. 4, p. 1205.

    Article  CAS  Google Scholar 

  36. X.F. Zhang, P.F. Guan, and X.L. Dong, Transform between the permeability and permittivity in the close-packed Ni nanoparticles, Appl. Phys. Lett., 97(2010), No. 3, art. No. 033107.

  37. Z.X. Yu, N. Zhang, Z.P. Yao, X.J. Han, and Z.H. Jiang, Synthesis of hierarchical dendritic micro-nano structure CoxFe1−x alloy with tunable electromagnetic absorption performance, J. Mater. Chem. A, 1(2013), No. 40, p. 12462.

    Article  CAS  Google Scholar 

  38. Z.C. Wu, K. Pei, L.S. Xing, X.F. Yu, W.B. You, and R.C. Che, Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite, Adv. Funct. Mater., 29(2019), No. 28, art. No. 1901448.

  39. R. Qiang, Y.C. Du, H.T. Zhao, et al., Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption, J. Mater. Chem. A, 3(2015), No. 25, p. 13426.

    Article  CAS  Google Scholar 

  40. X. Wen, L.Z. Hou, L.W. Deng, D.T. Kuang, H. Luo, and S.L. Wang, Facile fabrication of extremely small CoNi/C core/shell nanoparticles for efficient microwave absorber, Nano, 14(2019), No. 7, art. No. 1950090.

  41. H.L. Lv, Z.H. Yang, S.J.H. Ong, et al., A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility, Adv. Funct. Mater., 29(2019), No. 14, art. No. 1900163.

  42. C. Zhang, C. Long, S. Yin, et al., Graphene-based anisotropic polarization meta-filter, Mater. Des., 206(2021), art. No. 109768.

  43. Z.C. Lou, Q.Y. Wang, Y. Zhang, et al., In-situ formation of low-dimensional, magnetic core-shell nanocrystal for electromagnetic dissipation, Composites Part B, 214(2021), art. No. 108744.

  44. M.L. Yang, Y. Yuan, W.L. Yin, et al., Co/CoO@C nanocomposites with a hierarchical bowknot-like nanostructure for high performance broadband electromagnetic wave absorption, Appl. Surf. Sci., 469(2019), p. 607.

    Article  CAS  Google Scholar 

  45. B.Y. Zhu, P. Miao, J. Kong, X.L. Zhang, G.Y. Wang, and K.J. Chen, Co/C composite derived from a newly constructed metal-organic framework for effective microwave absorption, Cryst. Growth Des., 19(2019), No. 3, p. 1518.

    Article  CAS  Google Scholar 

  46. Z. Zheng, B. Xu, L. Huang, L. He, and X.M. Ni, Novel composite of Co/carbon nanotubes: Synthesis, magnetism and microwave absorption properties, Solid State Sci., 10(2008), No. 3, p. 316.

    Article  CAS  Google Scholar 

  47. F.S. Wen, F. Zhang, and Z.Y. Liu, Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers, J. Phys. Chem. C, 115(2011), No. 29, p. 14025.

    Article  CAS  Google Scholar 

  48. W. Liu, L. Liu, Z.H. Yang, J.J. Xu, Y.L. Hou, and G.B. Ji, A versatile route toward the electromagnetic functionalization of metal-organic framework-derived three-dimensional nanoporous carbon composites, ACS Appl. Mater. Interfaces, 10(2018), No. 10, p. 8965.

    Article  CAS  Google Scholar 

  49. X.M. Zhang, G.B. Ji, W. Liu, et al., Thermal conversion of an Fe3O4@metal-organic framework: A new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material, Nanoscale, 7(2015), No. 30, p. 12932.

    Article  CAS  Google Scholar 

  50. J. Lv, X.H. Liang, G.B. Ji, B. Quan, W. Liu, and Y.W. Du, Structural and carbonized design of 1D FeNi/C nanofibers with conductive network to optimize electromagnetic parameters and absorption abilities, ACS Sustainable Chem. Eng., 6(2018), No. 6, p. 7239.

    Article  CAS  Google Scholar 

  51. H.F. Qiu, X.Y. Zhu, P. Chen, J.L. Liu, and X.L. Zhu, Self-etching template method to synthesize hollow dodecahedral carbon capsules embedded with Ni-Co alloy for high-performance electromagnetic microwave absorption, Compos. Commun., 20(2020), art. No. 100354.

  52. A. Das, P. Negi, S.K. Joshi, and A. Kumar, Enhanced microwave absorption properties of Co and Ni co-doped iron (II, III)/reduced graphene oxide composites at X-band frequency, J. Mater. Sci. Mater. Electron., 30(2019), No. 21, p. 19325.

    Article  CAS  Google Scholar 

  53. X.L. Wu, K. Liu, J.W. Ding, et al., Construction of Ni-based alloys decorated sucrose-derived carbon hybrid towards: Effective microwave absorption application, Adv. Compos. Hybrid Mater., 5(2022), 3, p. 2260.

    Article  CAS  Google Scholar 

  54. Z.B. Su, J. Tao, J.Y. Xiang, Y. Zhang, C. Su, and F.S. Wen, Structure evolution and microwave absorption properties of nickel nanoparticles incorporated carbon spheres, Mater. Res. Bull., 84(2016), p. 445.

    Article  CAS  Google Scholar 

  55. H.L. Lv, Z.H. Yang, P.L. Wang, et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device, Adv. Mater., 30(2018), No. 15, art. No. 1706343.

  56. Y. Li, Y.C. Qing, B. Zhao, et al., Tunable magnetic coupling and dipole polarization of core-shell Magnéli Ti4O7 ceramic/magnetic metal possessing broadband microwave absorption properties, Ceram. Int., 47(2021), No. 23, p. 33373.

    Article  CAS  Google Scholar 

  57. H. Du, Q.P. Zhang, B. Zhao, et al., Novel hierarchical structure of MoS2/TiO2/Ti3C2Tx composites for dramatically enhanced electromagnetic absorbing properties, J. Adv. Ceram., 10(2021), No. 5, p. 1042.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. U2004177), the Henan Province Science and Technology Research and Development Project in 2020, China (No. 202300410491), and the Key Scientific Research Projects of Provincial Universities in 2021, China (No. 21A430045).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bingbing Fan or Xiaoqin Guo.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Bai, Z., Yang, X. et al. In-situ grown NiCo bimetal anchored on porous straw-derived biochar composites with boosted microwave absorption properties. Int J Miner Metall Mater 30, 515–524 (2023). https://doi.org/10.1007/s12613-022-2496-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2496-2

Keywords

Navigation