Skip to main content

Advertisement

Log in

Hydrogen-based direct reduction of industrial iron ore pellets: Statistically designed experiments and computational simulation

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

As part of efforts to reduce anthropogenic CO2 emissions by the steelmaking industry, this study investigated the direct reduction of industrially produced hematite pellets with H2 using the Doehlert experimental design to evaluate the effect of pellet diameter (10.5–16.5 mm), porosity (0.36–0.44), and temperature (600–1200°C). A strong interactive effect between temperature and pellet size was observed, indicating that these variables cannot be considered independently. The increase in temperature and decrease in pellet size considerably favor the reduction rate, while porosity did not show a relevant effect. The change in pellet size during the reduction was negligible, except at elevated temperatures due to crack formation. A considerable decrease in mechanical strength at high temperatures suggests a maximum process operating temperature of 900°C. Good predictive capacity was achieved using the modified grain model to simulate the three consecutive non-catalytic gas—solid reactions, considering different pellet sizes and porosities, changes during the reaction from 800 to 900°C. However, for other temperatures, different mechanisms of structural modifications must be considered in the modeling. These results represent significant contributions to the development of ore pellets for CO2-free steelmaking technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

1D:

One-dimensional space

ANOVA:

Analysis of variance

CL:

Calcination loss

DR:

Direct reduction

E1:

Extra reduction experiment 1

E2:

Extra reduction experiment 2

FEM:

Finite element method

GM:

Grain model

MIDREX:

Midland-ross direct iron reduction

SCM:

Shrinking core model

TGA:

Thermogravimetric analyzer

a :

Coefficients of the polynomial

A n :

Resistances due to chemical reactions n = 1, 2, 3, s/m

B n :

Resistances due to the diffusion of the reacted solid layer of n = 1 (magnetite), 2 (wustite), and 3 (iron), s/m

\({C_{{\rm{eq}}n,{{\rm{H}}_2}}}\) :

Equilibrium concentrations of H2 for each of reactions n = 1, 2, 3, mol/m3

C H, C M, C W, C Fe :

Concentration of hematite, magnetite, wustite, and iron, respectively, mol/m3

C i :

Concentration of specie i = H2 or H2O, mol/m3

C i,bulk :

Concentration bulk of specie i = H2 or H2O, mol/m3

d p d 0 :

Pellet initial diameter, mm

D effi :

Effective diffusivity of i = H2 or H2O, m2/s

D i :

Effective intraparticle diffusivity of i = H2 or H2O, m2/s

D i,j :

Effective intraparticle diffusivity of i = H2 or H2O, m2/s

D k i :

Knudsen diffusivity of i = H2 or H2O, m2/s

D m i :

Molecular diffusivity of i = H2 or H2O, m2/s

F :

Resistance of the gas film layer, s/m

K 0 :

Effective Knudsen parameter, m

k eq,n :

Equilibrium constant of H2 for reactions n = 1, 2, 3, [-]

k g :

Mass transfer coefficient through gaseous film, m/s

k n :

Reaction rate constant for reaction n = 1, 2, 3, m/s

M :

Molecular mass, g/mol

m 0 :

Initial mass of the pellet, g

m t :

Mass of the pellet at time t, g

m :

Final mass of the pellet, g

N :

Mol of the solid product formed by one mol of solid reagent

P :

Pressure, Pa

\(\bar R\) :

Gas constant, J·mol−1·K−1

R 2 :

Coefficient of determination, [-]

r :

Radial coordinate in the pellet, m

Re :

Reynolds number

r g :

Grain radius, m

r n :

Radius of the reaction interface within each grain n = 1, 2, 3, m

r n,0 :

Initial radius of the reaction interface within each grain n = 1, 2, 3, m

R n :

Reaction rate for reactions n = 1, 2, 3 mol·m−3·s−1

r p :

Pellet radius, m

Sc :

Schmidt number, [-]

Sh :

Sherwood number, [-]

T :

Temperature, K or °C

t :

Time, s

U k :

Measure experimental values for each factor k = 1, 2, 3, mm, °C, or [-]

U k :

Nominal experimental values for each factor k = 1, 2, 3, mm, °C, or [-]

U 0 k :

Centred experimental values for each factor k = 1, 2, 3, mm, °C, or [-]

v i :

Stoichiometric coefficient

y :

Mole fraction [-]

Y q :

Response q, q = 1, 2, min or N/mm2

X n :

Fractional reduction for n = 1 (magnetite), 2 (wustite), and 3 (iron), [-]

x n :

Local fractional reduction for n = 1 (magnetite), 2 (wustite), and 3 (iron), [-]

X global :

Global fractional reduction of the pellet, [-]

Z k :

Real coded values for each factor k = 1, 2, 3, [-]

Z k :

Nominal coded values for each factor k = 1, 2, 3, [-]

δ k :

Maximum code value of each factor k = 1, 2, 3

ΔU k :

Experimental step value, mm, °C, or [-]

ε :

Pellet porosity, [-]

ε 0, ε s,0, ε s :

Initial porosity of the pellet, initial porosity and predicted porosity of the solids s = H, M, W, Fe, respectively, [-]

ε M, ε w, ε Fe :

Porosity of the magnetite, wustite and iron, respectively, [-]

ε f, ε s,f :

Final porosity of the pellet, predicted final porosity of the solids s = H, M, W, Fe, [-]

ρ s,0 :

Initial true molar density of the s = H, M, W, Fe, mol/m3

ρ s,f :

Final true molar density of the s = H, M, W, Fe, mol/m3

σ :

Diffusion volume of simple molecule, cm3/mol

Φ 2 :

Thiele modulus, [-]

Note: [-]:

means the variables are dimensionless.

References

  1. G. Froment, K. Bischoff, and Juray de Wilde, Chemical Reactor Analysis and Design, 3rd ed., Wiley, Hoboken, 2010.

    Google Scholar 

  2. S. Kimura, J. Nakagawa, S. Tone, and T. Otake, Non-isothermal behavior of gas-solid reactions based on the volume reaction model, J. Chem. Eng. Jpn., 15(1982), No. 2, p. 115.

    Article  CAS  Google Scholar 

  3. M.E. Kinaci, T. Lichtenegger, and S. Schneiderbauer, A CFDDEM model for the simulation of direct reduction of iron-ore in fluidized beds, Chem. Eng. Sci., 227(2020), art. No. 115858.

  4. Midrex Technologies Inc., 2019 World Direct Reduction Statistics, Midrex Technologies Inc., 2020 [2021-01-20]. https://www.midrex.com/wp-content/uploads/Midrex-STATS-book2019Final.pdf

  5. IEA, Iron and Steel Technology Roadmap, IEA, Paris, 2020 [2021-08-26]. https://www.iea.org/reports/iron-and-steel-technology-roadmap

  6. European Commission, Energy Efficiency and CO2 Reduction in the Iron and Steel Industry, European Commission Joint Research Centre Institute for Energy and Transport, 2021 [2021-08-26]. http://setis.ec.europa.eu/technologies/energy-intensive-industries/energy-effciency-and-co2-reduction-iron-steel-industry

  7. L. Holappa, A general vision for reduction of energy consumption and CO2 emissions from the steel industry, Metals, 10(2020), No. 9, art. No. 1117.

  8. F. Patisson and O. Mirgaux, Hydrogen ironmaking: How it works, Metals, 10(2020), No. 7, art. No. 922.

  9. A. Bonalde, A. Henriquez, and M. Manrique, Kinetic analysis of the iron oxide reduction using hydrogen-carbon monoxide mixtures as reducing agent, ISIJ Int., 45(2005), No. 9, p. 1255.

    Article  CAS  Google Scholar 

  10. A. Hammam, Y. Li, H. Nie, et al., Isothermal and non-isothermal reduction behaviors of iron ore compacts in pure hydrogen atmosphere and kinetic analysis, Min. Metall. Explor., 38(2021), No. 1, p. 81.

    Google Scholar 

  11. H.B. Zuo, C. Wang, J.J. Dong, K.X. Jiao, and R.S. Xu, Reduction kinetics of iron oxide pellets with H2 and CO mixtures, Int. J. Miner. Metall. Mater., 22(2015), No. 7, p. 688.

    Article  CAS  Google Scholar 

  12. D. Spreitzer and J. Schenk, Reduction of iron oxides with hydrogen—A review, Steel Res. Int., 90(2019), No. 10, art. No. 1900108.

  13. H. Ahn and S. Choi, A comparison of the shrinking core model and the grain model for the iron ore pellet indurator simulation, Comput. Chem. Eng., 97(2017), p. 13.

    Article  CAS  Google Scholar 

  14. A.Z. Ghadi, M.S. Valipour, and M. Biglari, Mathematical modelling of wustite pellet reduction: Grain model in comparison with USCM, Ironmaking Steelmaking, 43(2016), No. 6, p. 418.

    Article  CAS  Google Scholar 

  15. T. Melchiori and P. Canu, Improving the quantitative description of reacting porous solids: Critical analysis of the shrinking core model by comparison to the generalized grain model, Ind. Eng. Chem. Res., 53(2014), No. 22, p. 8980.

    Article  CAS  Google Scholar 

  16. J. Szekely and J.W. Evans, A structural model for gas-solid reactions with a moving boundary-II, Chem. Eng. Sci., 26(1971), No. 11, p. 1901.

    Article  CAS  Google Scholar 

  17. B.M. Sloman, C.P. Please, and R.A. van Gorder, Homogenization of a shrinking core model for gas-solid reactions in granular particles, SIAM J. Appl. Math., 79(2019), No. 1, p. 177.

    Article  Google Scholar 

  18. A. Zare Ghadi, M.S. Valipour, S.M. Vahedi, and H.Y. Sohn, A review on the modeling of gaseous reduction of iron oxide pellets, Steel Res. Int., 91(2020), No. 1, art. No. 1900270.

  19. A. Pineau, N. Kanari, and I. Gaballah, Kinetics of reduction of iron oxides by H2: Part II. Low temperature reduction of magnetite, Thermochim. Acta, 456(2007), No. 2, p. 75.

    Article  CAS  Google Scholar 

  20. A. Pineau, N. Kanari, and I. Gaballah, Kinetics of reduction of iron oxides by H2, Thermochim. Acta, 447(2006), No. 1, p. 89.

    Article  CAS  Google Scholar 

  21. Z.Y. Chen, J. Dang, X.J. Hu, and H.Y. Yan, Reduction kinetics of hematite powder in hydrogen atmosphere at moderate temperatures, Metals, 8(2018), No. 10, art. No. 751.

  22. K. Piotrowski, K. Mondal, T. Wiltowski, P. Dydo, and G. Rizeg, Topochemical approach of kinetics of the reduction of hematite to wüstite, Chem. Eng. J., 131(2007), No. 1–3, p. 73.

    Article  CAS  Google Scholar 

  23. M. Bahgat and M.H. Khedr, Reduction kinetics, magnetic behavior and morphological changes during reduction of magnetite single crystal, Mater. Sci. Eng. B, 138(2007), No. 3, p. 251.

    Article  CAS  Google Scholar 

  24. D.H. Liu, X.Z. Wang, J.L. Zhang, et al., Study on the controlling steps and reduction kinetics of iron oxide briquettes with CO-H2 mixtures, Metall. Res. Technol., 114(2017), No. 6, art. No. 611.

  25. T. Murakami, H. Wakabayashi, D. Maruoka, and E. Kasai, Effect of hydrogen concentration in reducing gas on the changes in mineral phases during reduction of iron ore sinter, ISIJ Int., 60(2020), No. 12, p. 2678.

    Article  CAS  Google Scholar 

  26. M.H. Bai, H. Long, L.J. Li, et al., Kinetics of iron ore pellets reduced by H2N2 under non-isothermal condition, Int. J. Hydrogen Energy, 43(2018), No. 32, p. 15586.

    Article  CAS  Google Scholar 

  27. A. Niksiar and A. Rahimi, A study on deviation of noncatalytic gas-solid reaction models due to heat effects and changing of solid structure, Powder Technol., 193(2009), No. 1, p. 101.

    Article  CAS  Google Scholar 

  28. E. Nyankson and L. Kolbeinsen, Kinetics of direct iron ore reduction with CO-H2 gas mixtures, Int. J. Eng. Res. Technol., 4(2015), No. 4, p. 934.

    Google Scholar 

  29. M.S. Valipour, Mathematical modeling of a non-catalytic gas-solid reaction: hematite pellet reduction with syngas, Trans. Chem. Chem. Eng. C, 16(2009), No. 2, p. 108.

    CAS  Google Scholar 

  30. M.S. Valipour, M.Y. Motamed Hashemi, and Y. Saboohi, Mathematical modeling of the reaction in an iron ore pellet using a mixture of hydrogen, water vapor, carbon monoxide and carbon dioxide: An isothermal study, Adv. Powder Technol., 17(2006), No. 3, p. 277.

    Article  CAS  Google Scholar 

  31. M. Kazemi, M.S. Pour, and S.C. Du, Experimental and modeling study on reduction of hematite pellets by hydrogen gas, Metall. Mater. Trans. B, 48(2017), No. 2, p. 1114.

    Article  CAS  Google Scholar 

  32. S.M.M. Nouri, H. Ale Ebrahim, and E. Jamshidi, Simulation of direct reduction reactor by the grain model, Chem. Eng. J., 166(2011), No. 2, p. 704.

    Article  CAS  Google Scholar 

  33. A. Ranzani da Costa, D. Wagner, and F. Patisson, Modelling a new, low CO2 emissions, hydrogen steelmaking process, J. Cleaner Prod., 46(2013), p. 27.

    Article  CAS  Google Scholar 

  34. D.H. Doehlert, Uniform shell designs, Appl. Stat., 19(1970), No. 3, art. No. 231.

  35. M. Sautour, A. Rouget, P. Dantigny, C. Divies, and M. Bensoussan, Application of Doehlert design to determine the combined effects of temperature, water activity and pH on conidial germination of Penicillium chrysogenum, J. Appl. Microbiol., 91(2001), No. 5, p. 900.

    Article  CAS  Google Scholar 

  36. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, and L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76(2008), No. 5, p. 965.

    Article  CAS  Google Scholar 

  37. J. Szekely, J. W. Evans, and H. Y. Sohn, Gas-Solid Reactions, 1st ed., Academic Press, New York, 1976.

    Google Scholar 

  38. J. Welty, C.E. Wicks, G. Rorrer, and R.E. Wilson, Fundamentals of Momentum, Heat and Mass Transfer, 5th ed., Wiley, Corvallis, 2007

    Google Scholar 

  39. C.R. Wilke and P. Chang, Correlation of diffusion coefficients in dilute solutions, AIChE J., 1(1955), No. 2, p. 264.

    Article  CAS  Google Scholar 

  40. A. Rahimi and A. Niksiar, A general model for moving-bed reactors with multiple chemical reactions part I: Model formulation, Int. J. Miner. Process., 124(2013), p. 58.

    Article  CAS  Google Scholar 

  41. T. Akiyama, R. Takahashi, and J.I. Yagi, Measurements of heat transfer coefficients between gas and particles for a single sphere and for moving beds, ISIJ Int., 33(1993), No. 6, p. 703.

    Article  CAS  Google Scholar 

  42. T. Akiyama, H. Ohta, R. Takahashi, Y. Waseda, and J.I. Yagi, Measurement and modeling of thermal conductivity for dense iron oxide and porous iron ore aggliomerates in stepwise reduction, ISIJ Int., 32(1992), No. 7, p. 829.

    Article  CAS  Google Scholar 

  43. M. Iljana, A. Kemppainen, T. Paananen, et al., Effect of adding limestone on the metallurgical properties of iron ore pellets, Int. J. Miner. Process., 141(2015), p. 34.

    Article  CAS  Google Scholar 

  44. Z.C. Huang, L.Y. Yi, and T. Jiang, Mechanisms of strength decrease in the initial reduction of iron ore oxide pellets, Powder Technol., 221(2012), p. 284.

    Article  CAS  Google Scholar 

  45. L.Y. Yi, Z.C. Huang, T. Jiang, R.H. Zhong, and Z.K. Liang, Iron ore pellet disintegration mechanism in simulated shaft furnace conditions, Powder Technol., 317(2017), p. 89.

    Article  CAS  Google Scholar 

  46. A. Heidari, N. Niknahad, M. Iljana, and T. Fabritius, A review on the kinetics of iron ore reduction by hydrogen, Materials, 14(2021), No. 24, art. No. 7540.

  47. M. Mizutani, T. Orimoto, T. Nishimura, and K. Higuchi, In-situ evaluation for crack generation behavior of iron ore agglomeration during low temperature reduction by applying acoustic emission method and analysis of reduction disintegration behavior, Nippon Steel Tech. Rep., 2020, No. 123, p. 48.

  48. Y. Takenaka, Y. Kimura, K. Narita, and D. Kaneko, Mathematical model of direct reduction shaft furnace and its application to actual operations of a model plant, Comput. Chem. Eng., 10(1986), No. 1, p. 67.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Institute of Technological Research — IPT, Fundação de Amparo ã Pesquisa do Estado de São Paulo, Brazil [Process 2019/05840-3] and Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil [Process 167470/2018-3].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia Metolina.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Supplementary Materials

12613_2022_2487_MOESM1_ESM.docx

Hydrogen-based direct reduction of industrial iron ore pellets: Statistically designed experiments and computational simulation, approximately 84 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metolina, P., Ribeiro, T.R. & Guardani, R. Hydrogen-based direct reduction of industrial iron ore pellets: Statistically designed experiments and computational simulation. Int J Miner Metall Mater 29, 1908–1921 (2022). https://doi.org/10.1007/s12613-022-2487-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2487-3

Keywords

Navigation