Skip to main content

Advertisement

Log in

Rapid design of secondary deformation-aging parameters for ultra-low Co content Cu-Ni-Co-Si-X alloy via Bayesian optimization machine learning

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

It is difficult to rapidly design the process parameters of copper alloys by using the traditional trial-and-error method and simultaneously improve the conflicting mechanical and electrical properties. The purpose of this work is to develop a new type of Cu-Ni-Co-Si alloy saving scarce and expensive Co element, in which the Co content is less than half of the lower limit in ASTM standard C70350 alloy, while the properties are as the same level as C70350 alloy. Here we adopted a strategy combining Bayesian optimization machine learning and experimental iteration and quickly designed the secondary deformation-aging parameters (cold rolling deformation 90%, aging temperature 450°C, and aging time 1.25 h) of the new copper alloy with only 32 experiments (27 basic sample data acquisition experiments and 5 iteration experiments), which broke through the barrier of low efficiency and high cost of trial-and-error design of deformation-aging parameters in precipitation strengthened copper alloy. The experimental hardness, tensile strength, and electrical conductivity of the new copper alloy are HV (285 ± 4), (872 ± 3) MPa, and (44.2 ± 0.7)% IACS (international annealed copper standard), reaching the property level of the commercial lead frame C70350 alloy. This work provides a new idea for the rapid design of material process parameters and the simultaneous improvement of mechanical and electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Li, Z. Xiao, Y.B. Jiang, Q. Lei, and J.X. Xie, Composition design, phase transition and fabrication of copper alloys with high strength and electrical conductivity, Chin. J. of Nonferrous Met., 29(2019), No. 9, p. 2009.

    Google Scholar 

  2. L. Jiang, H.D. Fu, C.S. Wang, W.D. Li, and J.X. Xie, Enhanced mechanical and electrical properties of a Cu-Ni-Si alloy by thermo-mechanical processing, Metall. Mater. Trans. A, 51(2020), No. 1, p. 331.

    Article  CAS  Google Scholar 

  3. H.D. Fu, S. Xu, W. Li, J.X. Xie, H.B. Zhao, and Z.J. Pan, Effect of rolling and aging processes on microstructure and properties of Cu-Cr-Zr alloy, Mater. Sci. Eng. A, 700(2017), p. 107.

    Article  CAS  Google Scholar 

  4. H.T. Zhang, Y.B. Jiang, J.X. Xie, Y.H. Li, and L.J. Yue, Precipitation behavior, microstructure and properties of aged Cu-1.7 wt% Be alloy, J. Alloys Compd., 773(2019), p. 1121.

    Article  CAS  Google Scholar 

  5. Z.L. Zhao, Z. Li, Z. Xiao, M.Z. Ma, and K.R. Song, Dynamic recrystallization of Cu-Cr-Ni-Si-Co alloy during hot deformation, JOM, 73(2021), No. 8, p. 2274.

    Article  CAS  Google Scholar 

  6. R. Monzen and C. Watanabe, Microstructure and mechanical properties of Cu-Ni-Si alloys, Mater. Sci. Eng. A, 483–484(2008), p. 117.

    Article  Google Scholar 

  7. J. Li, G.J. Huang, X.J. Mi, L.J. Peng, H.F. Xie, and Y.L. Kang, Relationship between the microstructure and properties of a peak aged Cu-Ni-Co-Si alloy, Mater. Sci. Technol., 35(2019), No. 5, p. 606.

    Article  CAS  Google Scholar 

  8. U. Bhandari, C.Y. Zhang, S.M. Guo, and S.Z. Yang, First-principles study on the mechanical and thermodynamic properties of MoNbTaTiW, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1398.

    Article  CAS  Google Scholar 

  9. Z.S. Nong, H.Y. Wang, and J.C. Zhu, First-principles calculations of structural, elastic and electronic properties of (TaNb)0.67(HfZrTi)0.33 high-entropy alloy under high pressure, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1405.

    Article  CAS  Google Scholar 

  10. J. Li, G.J. Huang, X.J. Mi, L.J. Peng, H.F. Xie, and Y.L. Kang, Influence of the Ni/Co mass ratio on the microstructure and properties of quaternary Cu-Ni-Co-Si alloys, Materials, 12(2019), No. 18, art. No. 2855.

    Google Scholar 

  11. J.Z. Huang, Z. Xiao, J. Dai, Z. Li, H.Y. Jiang, W. Wang, et al., Microstructure and properties of a novel Cu-Ni-Co-Si-Mg alloy with super-high strength and conductivity, Mater. Sci. Eng. A, 744(2019), p. 754.

    Article  CAS  Google Scholar 

  12. Z. Zhao, Y. Zhang, B.H. Tian, Y.L. Jia, Y. Liu, K.X. Song, et al., Co effects on Cu-Ni-Si alloys microstructure and physical properties, J. Alloys Compd., 797(2019), p. 1327.

    Article  CAS  Google Scholar 

  13. E. Holmström, R. Lizárraga, D. Linder, A. Salmasi, W. Wang, B. Kaplan, et al., High entropy alloys: Substituting for cobalt in cutting edge technology, Appl. Mater. Today, 12(2018), p. 322.

    Article  Google Scholar 

  14. W. Wang, Y. Wang, W.Z. Mu, J.H. Park, H. Kong, S. Sukenaga, et al., Inclusion engineering in Co-based duplex entropic alloys, Mater. Des., 210(2021), art. No. 110097.

  15. S.C. Krishna, J. Srinath, A.K. Jha, B. Pant, S.C. Sharma, and K.M. George, Microstructure and properties of a high-strength Cu-Ni-Si-Co-Zr alloy, J. Mater. Eng. Perform., 22(2013), No. 7, p. 2115.

    Article  Google Scholar 

  16. X.P. Xiao, J. Huang, J.S. Chen, H. Xu, Z. Li, and J.B. Zhang, Aging behavior and precipitation analysis of Cu-Ni-Co-Si alloy, Crystals, 8(2018), No. 11, art. No. 435.

    Google Scholar 

  17. J. Li, G.J. Huang, X.J. Mi, L.J. Peng, H.F. Xie, and Y.L. Kang, Microstructure evolution and properties of a quaternary Cu-Ni-Co-Si alloy with high strength and conductivity, Mater. Sci. Eng. A, 766(2019), art. No. 138390.

  18. K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, and A. Walsh, Machine learning for molecular and materials science, Nature, 559(2018), No. 7715, p. 547.

    Article  CAS  Google Scholar 

  19. C. Suh, C. Fare, J.A. Warren, and E.O. Pyzer-Knapp, Evolving the materials genome: How machine learning is fueling the next generation of materials discovery, Annu. Rev. Mater. Res., 50(2020), p. 1.

    Article  CAS  Google Scholar 

  20. J.M. Rickman, T. Lookman, and S.V. Kalinin, Materials informatics: From the atomic-level to the continuum, Acta Mater., 168(2019), p. 473.

    Article  CAS  Google Scholar 

  21. Y.J. Su, H.D. Fu, Y. Bai, X. Jiang, and J.X. Xie, Progress in materials genome engineering in China, Acta Metall. Sinica, 56(2020), No. 10, p. 1313.

    CAS  Google Scholar 

  22. B. Sanchez-Lengeling and A. Aspuru-Guzik, Inverse molecular design using machine learning: Generative models for matter engineering, Science, 361(2018), No. 6400, p. 360.

    Article  CAS  Google Scholar 

  23. J.M. Rickman, H.M. Chan, M.P. Harmer, J.A. Smeltzer, C.J. Marvel, A. Roy, et al., Materials informatics for the screening of multi-principal elements and high-entropy alloys, Nat. Commun., 10(2019), No. 1, art. No. 2618.

    Google Scholar 

  24. G.R. Schleder, A.C.M. Padilha, C.M. Acosta, M. Costa, and A. Fazzio, From DFT to machine learning: Recent approaches to materials science-A review, J. Phys. Mater., 2(2019), No. 3, art. No. 032001.

    Google Scholar 

  25. R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, and C. Kim, Machine learning in materials informatics: Recent applications and prospects, npj Comput. Mater., 3(2017), art. No. 54.

  26. P. Raccuglia, K.C. Elbert, P.D.F. Adler, C. Falk, M.B. Wenny, A. Mollo, et al., Machine-learning-assisted materials discovery using failed experiments, Nature, 533(2016), No. 7601, p. 73.

    Article  CAS  Google Scholar 

  27. C.S. Wang, H.D. Fu, L. Jiang, D.Z. Xue, and J.X. Xie, A property-oriented design strategy for high performance copper alloys via machine learning, npj Comput. Mater., 5(2019), art. No. 87.

  28. H.T. Zhang, H.D. Fu, X.Q. He, C.S. Wang, L. Jiang, L.Q. Chen, et al., Dramatically enhanced combination of ultimate tensile strength and electric conductivity of alloys via machine learning screening, Acta Mater., 200(2020), p. 803.

    Article  CAS  Google Scholar 

  29. G. Tapia, A.H. Elwany, and H. Sang, Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models, Addit. Manuf., 12(2016), p. 282.

    CAS  Google Scholar 

  30. D.R. Jones, M. Schonlau, and W.J. Welch, Efficient global optimization of expensive black-box functions, J. Global Optim., 13(1998), No. 4, p. 455.

    Article  Google Scholar 

  31. D.Z. Xue, P.V. Balachandran, J. Hogden, J. Theiler, D.Q. Xue, and T. Lookman, Accelerated search for materials with targeted properties by adaptive design, Nat. Commun., 7(2016), art. No. 11241.

  32. D.Z. Xue, D.Q. Xue, R.H. Yuan, Y.M. Zhou, P.V. Balachandran, X.D. Ding, et al., An informatics approach to transformation temperatures of NiTi-based shape memory alloys, Acta Mater., 125(2017), p. 532.

    Article  CAS  Google Scholar 

  33. P.V. Balachandran, D.Z. Xue, J. Theiler, J. Hogden, and T. Lookman, Adaptive strategies for materials design using uncertainties, Sci. Rep., 6(2016), art. No. 19660.

  34. T. Lookman, P.V. Balachandran, D.Z. Xue, J. Hogden, and J. Theiler, Statistical inference and adaptive design for materials discovery, Curr. Opin. Solid State Mater. Sci., 21(2017), No. 3, p. 121.

    Article  CAS  Google Scholar 

  35. C. Wen, Y. Zhang, C.X. Wang, D.Z. Xue, Y. Bai, S. Antonov, et al., Machine learning assisted design of high entropy alloys with desired property, Acta Mater., 170(2019), p. 109.

    Article  CAS  Google Scholar 

  36. R.H. Yuan, Z. Liu, P.V. Balachandran, D.Q. Xue, Y.M. Zhou, X.D. Ding, et al., Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learning, Adv. Mater., 30(2018), No. 7, art. No. 1702884.

    Google Scholar 

  37. R.H. Yuan, D.Q. Xue, D.Z. Xue, Y.M. Zhou, X.D. Ding, J. Sun, et al., The search for BaTiO3-based piezoelectrics with large piezoelectric coefficient using machine learning, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 66(2019), No. 2, p. 394.

    Article  Google Scholar 

  38. J.H. Gao, Y.B. Liu, Y. Wang, X.H. Hu, W.B. Yan, X.Q. Ke, et al., Designing high dielectric permittivity material in barium titanate, J. Phys. Chem. C, 121(2017), No. 24, p. 13106.

    Article  CAS  Google Scholar 

  39. Z.H. Deng, H.Q. Yin, X. Jiang, C. Zhang, G.F. Zhang, B. Xu, et al., Machine-learning-assisted prediction of the mechanical properties of Cu-Al alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 362.

    Article  CAS  Google Scholar 

  40. H.T. Zhang, H.D. Fu, S.C. Zhu, W. Yong, and J.X. Xie, Machine learning assisted composition effective design for precipitation strengthened copper alloys, Acta Mater., 215(2021), art. No. 117118.

  41. L. Balogh, T. Ungár, Y.H. Zhao, Y.T. Zhu, Z. Horita, C. Xu, et al., Influence of stacking-fault energy on microstructural characteristics of ultrafine-grain copper and copper-zinc alloys, Acta Mater., 56(2008), No. 4, p. 809.

    Article  CAS  Google Scholar 

  42. M. Gholami, J. Vesely, I. Altenberger, H.A. Kuhn, M. Janecek, M. Wollmann, et al., Effects of microstructure on mechanical properties of CuNiSi alloys, J. Alloys Compd., 696(2017), p. 201.

    Article  CAS  Google Scholar 

  43. G.K. Williamson and W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall., 1(1953), No. 1, p. 22.

    Article  CAS  Google Scholar 

  44. E. Orowan, Fracture and strength of solids, Rep. Prog. Phys., 12(1949), No. 1, p. 185.

    Article  Google Scholar 

  45. M. Mabuchi and K. Higashi, Strengthening mechanisms of Mg-Si alloys, Acta Mater., 44(1996), No. 11, p. 4611.

    Article  CAS  Google Scholar 

  46. Q. Lei, Z. Li, A.Y. Zhu, W.T. Qiu, and S.Q. Liang, The transformation behavior of Cu-8.0Ni-1.8Si-0.6Sn-0.15Mg alloy during isothermal heat treatment, Mater. Charact., 62(2011), No. 9, p. 904.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huadong Fu or Jianxin Xie.

Ethics declarations

The authors declare no conflict of interest.

Supplementary Information

12613_2022_2479_MOESM1_ESM.docx

Rapid design of secondary deformation-aging parameters for ultra-low Co content Cu-Ni-Co-Si-X alloy via Bayesian optimization machine learning

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Fu, H., Shen, Y. et al. Rapid design of secondary deformation-aging parameters for ultra-low Co content Cu-Ni-Co-Si-X alloy via Bayesian optimization machine learning. Int J Miner Metall Mater 29, 1197–1205 (2022). https://doi.org/10.1007/s12613-022-2479-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2479-3

Keywords

Navigation