Skip to main content
Log in

Fe-based amorphous coating prepared using high-velocity oxygen fuel and its corrosion behavior in static lead-bismuth eutectic alloy

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The Fe49.7Cr18Mn1.9Mo7.4W1.6B15.2C3.8Si2 amorphous coating was deposited on T91 steel substrate by using the high-velocity oxygen fuel (HVOF) spray technique to enhance the corrosion resistance of T91 stainless steel in liquid lead-bismuth eutectic (LBE). The corrosion behavior of the T91 steel and coating exposed to oxygen-saturated LBE at 400°C for 500 h was investigated. Results showed that the T91 substrate was severely corroded and covered by a homogeneously distributed dual-layer oxide on the interface contacted to LBE, consisting of an outer magnetite layer and an inner Fe−Cr spinel layer. Meanwhile, the amorphous coating with a high glass transition temperature (Tg = 550°C) and crystallization temperature (Tx = 600°C) exhibited dramatically enhanced thermal stability and corrosion resistance. No visible LBE penetration was observed, although small amounts of Fe3O4, Cr2O3, and PbO were found on the coating surface. In addition, the amorphicity and interface bonding of the coating layer remained unchanged after the LBE corrosion. The Fe-based amorphous coating can act as a stable barrier layer in liquid LBE and have great application potential for long-term service in LBE-cooled fast reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.L. Murty and I. Charit, Structural materials for Gen-IV nuclear reactors: Challenges and opportunities, J. Nucl. Mater., 383(2008), No. 1–2, p. 189.

    Article  CAS  Google Scholar 

  2. H. Wang, J. Xiao, H. Wang, et al., Corrosion behavior and surface treatment of cladding materials used in high-temperature lead-bismuth eutectic alloy: A review, Coatings, 11(2021), No. 3, p. 364.

    Article  Google Scholar 

  3. J.S. Zhang and N. Li, Review of the studies on fundamental issues in LBE corrosion, J. Nucl. Mater., 373(2008), No. 1–3, p. 351.

    Article  CAS  Google Scholar 

  4. J.S. Zhang, A review of steel corrosion by liquid lead and leadbismuth, Corros. Sci., 51(2009), No. 6, p. 1207.

    Article  CAS  Google Scholar 

  5. J.S. Zhang and N. Li, Analysis on liquid metal corrosion-oxidation interactions, Corros. Sci., 49(2007), No. 11, p. 4154.

    Article  CAS  Google Scholar 

  6. V. Tsisar, S. Gavrilov, C. Schroer, and E. Stergar, Long-term corrosion performance of T91 ferritic/martensitic steel at 400°C in flowing Pb−Bi eutectic with 2 × 10−7 mass% dissolved oxygen, Corros. Sci., 174(2020), p. 108852.

    Article  CAS  Google Scholar 

  7. I. Proriol Serre, I. Diop, N. David, M. Vilasi, and J.B. Vogt, Mechanical behavior of coated T91 steel in contact with lead-bismuth liquid alloy at 300°C, Surf. Coat. Technol., 205(2011), No. 19, p. 4521.

    Article  CAS  Google Scholar 

  8. G. Müller, A. Heinzel, J. Konys, et al., Results of steel corrosion tests in flowing liquid Pb/Bi at 420–600°C after 2000 h, J. Nucl. Mater., 301(2002), No. 1, p. 40.

    Article  Google Scholar 

  9. A. Weisenburger, C. Schroer, A. Jianu, et al., Long term corrosion on T91 and AISI1 316L steel in flowing lead alloy and corrosion protection barrier development: Experiments and models, J. Nucl. Mater., 415(2011), No. 3, p. 260.

    Article  CAS  Google Scholar 

  10. G. Benamati, A. Gessi, and P.Z. Zhang, Corrosion experiments in flowing LBE at 450°C, J. Nucl. Mater., 356(2006), No. 1–3, p. 198.

    Article  CAS  Google Scholar 

  11. F. Gnecco, E. Ricci, C. Bottino, and A. Passerone, Corrosion behaviour of steels in lead-bismuth at 823 K, J. Nucl. Mater., 335(2004), No. 2, p. 185.

    Article  CAS  Google Scholar 

  12. A. Aiello, M. Azzati, G. Benamati, A. Gessi, B. Long, and G. Scaddozzo, Corrosion behaviour of stainless steels in flowing LBE at low and high oxygen concentration, J. Nucl. Mater., 335(2004), No. 2, p. 169.

    Article  CAS  Google Scholar 

  13. J.S. Zhang, N. Li, Y. Chen, and A.E. Rusanov, Corrosion behaviors of US steels in flowing lead-bismuth eutectic (LBE), J. Nucl. Mater., 336(2005), No. 1, p. 1.

    Article  CAS  Google Scholar 

  14. Y. Kurata, M. Futakawa, and S. Saito, Corrosion behavior of steels in liquid lead-bismuth with low oxygen concentrations, J. Nucl. Mater., 373(2008), No. 1–3, p. 164.

    Article  CAS  Google Scholar 

  15. A. Doubková, F. di Gabriele, P. Brabec, and E. Keilová, Corrosion behavior of steels in flowing lead-bismuth under abnormal conditions, J. Nucl. Mater., 376(2008), No. 3, p. 260.

    Article  Google Scholar 

  16. C. Fazio, G. Benamati, C. Martini, and G. Palombarini, Compatibility tests on steels in molten lead and lead-bismuth, J. Nucl. Mater., 296(2001), No. 1–3, p. 243.

    Article  CAS  Google Scholar 

  17. E.P. Loewen, H.J. Yount, K. Volk, and A. Kumar, Layer formation on metal surfaces in lead-bismuth at high temperatures in presence of zirconium, J. Nucl. Mater., 321(2003), No. 2–3, p. 269.

    Article  CAS  Google Scholar 

  18. O.F. Kammerer, J.R. Weeks, J. Sadofsky, W.E. Miller, and D.H. Gurinsky, Zirconium and titanium inhibit corrosion and mass transfer of steels by liquid heavy metals, Trans. Met. Soc. AIME, 212(1958), No. 1, art. No. 4306436.

  19. H. Glasbrenner and F. Gröschel, Exposure of pre-stressed T91 coated with TiN, CrN and DLC to Pb-55.5Bi, J. Nucl. Mater., 356(2006), No. 1–3, p. 213.

    Article  CAS  Google Scholar 

  20. J.R. Weeks and C.J. Klamut, Reactions between steel surfaces and zirconium in liquid bismuth, Nucl. Sci. Eng., 8(1960), No. 2, p. 133.

    Article  CAS  Google Scholar 

  21. N. Li, Active control of oxygen in molten lead-bismuth eutectic systems to prevent steel corrosion and coolant contamination, J. Nucl. Mater., 300(2002), No. 1, p. 73.

    Article  CAS  Google Scholar 

  22. L. Martinelli, C. Jean-Louis, and B.C. Fanny, Oxidation of steels in liquid lead bismuth: Oxygen control to achieve efficient corrosion protection, Nucl. Eng. Des., 241(2011), No. 5, p. 1288.

    Article  CAS  Google Scholar 

  23. G. Müller, A. Heinzel, G. Schumacher, and A. Weisenburger, Control of oxygen concentration in liquid lead and lead-bismuth, J. Nucl. Mater., 321(2003), No. 2–3, p. 256.

    Article  Google Scholar 

  24. J. Lim, G. Manfredi, S. Gavrilov, K. Rosseel, A. Aerts, and J. Van den Bosch, Control of dissolved oxygen in liquid LBE by electrochemical oxygen pumping, Sens. Actuators B, 204(2014), p. 388.

    Article  CAS  Google Scholar 

  25. A.K. Rivai and M. Takahashi, Compatibility of surface-coated steels, refractory metals and ceramics to high temperature lead-bismuth eutectic, Prog. Nucl. Energy, 50(2008), No. 2–6, p. 560.

    Article  CAS  Google Scholar 

  26. E. Yamaki-Irisawa, S. Numata, and M. Takahashi, Corrosion behavior of heat-treated Fe−Al coated steel in lead-bismuth eutectic under loading, Prog. Nucl. Energy, 53(2011), No. 7, p. 1066.

    Article  CAS  Google Scholar 

  27. Y. Kurata, H. Yokota, and T. Suzuki, Development of aluminum-alloy coating on type 316SS for nuclear systems using liquid lead-bismuth, J. Nucl. Mater., 424(2012), No. 1–3, p. 237.

    Article  CAS  Google Scholar 

  28. R. Fetzer, A. Weisenburger, A. Jianu, and G. Müller, Oxide scale formation of modified FeCrAl coatings exposed to liquid lead, Corros. Sci., 55(2012), p. 213.

    Article  CAS  Google Scholar 

  29. F. García Ferré, M. Ormellese, F. Di Fonzo, and M.G. Beghi, Advanced Al2O3 coatings for high temperature operation of steels in heavy liquid metals: A preliminary study, Corros. Sci., 77(2013), p. 375.

    Article  Google Scholar 

  30. R. Kasada and P. Dou, Sol-gel composite coatings as anti-corrosion barrier for structural materials of lead-bismuth eutectic cooled fast reactor, J. Nucl. Mater., 440(2013), No. 1–3, p. 647.

    Article  CAS  Google Scholar 

  31. X.Z. Fan, W.Z. Huang, H.T. Liu, and H.F. Cheng, Bond stability and oxidation resistance of BSAS-based coating on C/SiC composites, Surf. Coat. Technol., 309(2017), p. 35.

    Article  CAS  Google Scholar 

  32. H.X. Li, Z.C. Lu, S.L. Wang, Y. Wu, and Z.P. Lu, Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications, Prog. Mater. Sci., 103(2019), p. 235.

    Article  CAS  Google Scholar 

  33. H.Y. Yuan, H.M. Zhai, W.S. Li, et al., Study of dry sliding wear behavior of a Fe-based amorphous coating synthesized by detonation spraying on an AZ31B magnesium alloy, J. Mater. Eng. Perform., 30(2021), No. 2, p. 905.

    Article  CAS  Google Scholar 

  34. Z. Lu, X. Chen, X. Liu, et al., Interpretable machine-learning strategy for soft-magnetic property and thermal stability in Fe-based metallic glasses, npj Comput. Mater., 6(2020), No. 1, p. 1.

    Article  Google Scholar 

  35. Z.C. Lu, X.Y. Peng, Y.H. Tang, et al., Corrosion and irradiation behavior of Fe-based amorphous coating in lead-bismuth eutectic liquids, Sci. China: Technol. Sci., 65(2022), No. 2, p. 440.

    Article  CAS  Google Scholar 

  36. J.F. Zhang, M. Liu, J.B. Song, C.M. Deng, and C.G. Deng, Microstructure and corrosion behavior of Fe-based amorphous coating prepared by HVOF, J. Alloys Compd., 721(2017), p. 506.

    Article  CAS  Google Scholar 

  37. S.M. Muthu, M. Arivarasu, T.H. Krishna, et al., Improvement in hot corrosion resistance of dissimilar alloy 825 and AISI 321 CO2-laser weldment by HVOF coating in aggressive salt environment at 900°C, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1536.

    Article  CAS  Google Scholar 

  38. C. Zhang, L. Liu, K.C. Chan, Q. Chen, and C.Y. Tang, Wear behavior of HVOF-sprayed Fe-based amorphous coatings, Intermetallics, 29(2012), p. 80.

    Article  Google Scholar 

  39. G. Singh, N. Bala, and V. Chawla, Microstructural analysis and hot corrosion behavior of HVOF-sprayed Ni−22Cr−10Al−1Y and Ni−22Cr−10Al−1Y−SiC(N) coatings on ASTM-SA213-T22 steel, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 401.

    Article  CAS  Google Scholar 

  40. C.F. Yao, H.P. Zhang, H.L. Chang, et al., Structure of surface oxides on martensitic steel under simultaneous ion irradiation and molten LBE corrosion, Corros. Sci., 195(2022), art. No. 109953.

  41. J.D. Hodge, Diffusion of chromium in magnetite as a function of oxygen partial pressure, J. Electrochem. Soc., 125(1978), No. 2, p. 55C.

    Article  CAS  Google Scholar 

  42. M.G.C. Cox, B. McEnaney, and V.D. Scott, Phase interactions in the growth of thin oxide films on iron-chromium alloys, Philos. Mag. A: J. Theor. Exp. Appl. Phys., 29(1974), No. 3, p. 585.

    Article  CAS  Google Scholar 

  43. V. Maurice, W.P. Yang, and P. Marcus, X-ray photoelectron spectroscopy and scanning tunneling microscopy study of passive films formed on (100) Fe−18Cr−13Ni single-crystal surfaces, J. Electrochem. Soc., 145(1998), No. 3, p. 909.

    Article  CAS  Google Scholar 

  44. G.C. Allen, S.J. Harris, J.A. Jutson, and J.M. Dyke, A study of a number of mixed transition metal oxide spinels using X-ray photoelectron spectroscopy, Appl. Surf. Sci., 37(1989), No. 1, p. 111.

    Article  CAS  Google Scholar 

  45. S. Rondon and P.M.A. Sherwood, Core level and valence band spectra of PbO2 by XPS, Surf. Sci. Spectra, 5(1998), No. 2, p. 104.

    Article  CAS  Google Scholar 

  46. C.D. Wagner, D.A. Zatko, and R.H. Raymond, Use of the oxygen KLL Auger lines in identification of surface chemical states by electron spectroscopy for chemical analysis, Anal. Chem., 52(1980), No. 9, p. 1445.

    Article  CAS  Google Scholar 

  47. J.J. Si, X.H. Chen, Y.H. Cai, Y.D. Wu, T. Wang, and X.H. Hui, Corrosion behavior of Cr-based bulk metallic glasses in hydrochloric acid solutions, Corros. Sci., 107(2016), p. 123.

    Article  CAS  Google Scholar 

  48. S.J. Pang, T. Zhang, K. Asami, and A. Inoue, Formation of bulk glassy Fe75−xyCrxMoyC15B10 alloys and their corrosion behavior, J. Mater. Res., 17(2002), No. 3, p. 701.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (Nos. 52061135207, 51871016, 51921001, 5197011039, 5197011018, and U20b200318) and the China Nuclear Power Technology Research Institute Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangyao Lu or Yuan Wu.

Additional information

Conflict of interest

The authors declare that they have no conflicts of interest in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Tang, Y., Ding, X. et al. Fe-based amorphous coating prepared using high-velocity oxygen fuel and its corrosion behavior in static lead-bismuth eutectic alloy. Int J Miner Metall Mater 29, 2032–2040 (2022). https://doi.org/10.1007/s12613-022-2420-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2420-9

Keywords

Navigation