Skip to main content

Advertisement

Log in

Atmospheric corrosion behavior of Nb- and Sb-added weathering steels exposed to the South China Sea

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The atmospheric corrosion behavior of new-type weathering steels (WSs) was comparatively studied, and the effects of Nb and Sb during corrosion were clarified in detail through field exposure and characterization. The results showed that the addition of Nb and Sb played positive roles in corrosion resistance, but there was a clear difference between these two elements. Nb addition slightly improved the rust property of conventional WS but could not inhibit the electrochemical process. In contrast, Sb addition significantly improved the corrosion resistance from the aspects of electrochemistry and rust layer. Compared with only 0.06wt% Nb, the combination of 0.05wt% Sb and 0.06wt% Nb could better optimize the rust structure, accelerate the formation of a high proportion of dense and protective α-FeOOH, repel the invasion of Cl, and retard the localized acidification at the bottom of the pit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Morcillo, I. Díaz, H. Cano, B. Chico, and D. De La Fuente, Atmospheric corrosion of weathering steels. Overview for engineers. Part I: Basic concepts, Constr. Build. Mater., 213(2019), p. 723.

    Article  Google Scholar 

  2. I. Díaz, H. Cano, P. Lopesino, D. De La Fuente, B. Chico, J.A. Jiménez, S.F. Medina, and M. Morcillo, Five-year atmospheric corrosion of Cu, Cr and Ni weathering steels in a wide range of environments, Corros. Sci., 141(2018), p. 146.

    Article  Google Scholar 

  3. G. Niu, Y.L. Chen, H.B. Wu, X. Wang, and D. Tang, Corrosion behavior of high-strength spring steel for high-speed railway, Int. J. Miner. Metall. Mater., 25(2018), No. 5, p. 527.

    Article  CAS  Google Scholar 

  4. M. Yamashita, T. Shimizu, H. Konishi, J. Mizuki, and H. Uchida, Structure and protective performance of atmospheric corrosion product of Fe−Cr alloy film analyzed by Mössbauer spectroscopy and with synchrotron radiation X-rays, Corros. Sci., 45(2003), No. 2, p. 381.

    Article  Google Scholar 

  5. P.J. Wang, L.W. Ma, X.Q. Cheng, and X.G. Li, Influence of grain refinement on the corrosion behavior of metallic materials: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1112.

    Article  CAS  Google Scholar 

  6. Y.T. Ma, Y. Li, and F.H. Wang, Weatherability of 09CuPCrNi steel in a tropical marine environment, Corros. Sci., 51(2009), No. 8, p. 1725.

    Article  CAS  Google Scholar 

  7. Q.F. Xu, K.W. Gao, W.T. Lv, and X.L. Pang, Effects of alloyed Cr and Cu on the corrosion behavior of low-alloy steel in a simulated groundwater solution, Corros. Sci., 102(2016), p. 114.

    Article  CAS  Google Scholar 

  8. Y.L. Zhou, J. Chen, Y. Xu, and Z.Y. Liu, Effects of Cr, Ni and Cu on the corrosion behavior of low carbon microalloying steel in a Cl containing environment, J. Mater. Sci. Technol., 29(2013), No. 2, p. 168.

    Article  CAS  Google Scholar 

  9. S.Y. Cai, L. Wen, and Y. Jin, A comparative study on corrosion kinetic parameter estimation methods for the early stage corrosion of Q345B steel in 3.5wt% NaCl solution, Int. J. Miner. Metall. Mater., 24(2017), No. 10, p. 1112.

    Article  CAS  Google Scholar 

  10. W. Wu, X.Q. Cheng, H.X. Hou, B. Liu, and X.G. Li, Insight into the product film formed on Ni-advanced weathering steel in a tropical marine atmosphere, Appl. Surf. Sci., 436(2018), p. 80.

    Article  CAS  Google Scholar 

  11. S.U. Koh, J.M. Lee, B.Y. Yang, and K.Y. Kim, Effect of molybdenum and chromium addition on the susceptibility to sulfide stress cracking of high-strength, low-alloy steels, Corrosion, 63(2007), No. 3, p. 220.

    Article  CAS  Google Scholar 

  12. W. Wu, Z.Y. Liu, Q.Y. Wang, and X.G. Li, Improving the resistance of high-strength steel to SCC in a SO 2 polluted marine atmosphere through Nb and Sb microalloying, Corros. Sci., 170(2020), art. No. 108693.

  13. W. Wu, X.Q. Cheng, J.B. Zhao, and X.G. Li, Benefit of the corrosion product film formed on a new weathering steel containing 3% nickel under marine atmosphere in Maldives, Corros. Sci., 165(2020), art. No. 108416.

  14. D.L. Li, G.Q. Fu, M.Y. Zhu, Q. Li, and C.X. Yin, Effect of Ni on the corrosion resistance of bridge steel in a simulated hot and humid coastal-industrial atmosphere, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 325.

    Article  CAS  Google Scholar 

  15. L.Y. Song, Z.Y. Chen, and B.R. Hou, The role of the photovoltaic effect of γ-FeOOH and β-FeOOH on the corrosion of 09CuPCrNi weathering steel under visible light, Corros. Sci., 93(2015), p. 191.

    Article  CAS  Google Scholar 

  16. X.Q. Cheng, Y.W. Tian, X.G. Li, and C. Zhou, Corrosion behavior of nickel-containing weathering steel in simulated marine atmospheric environment, Mater. Corros., 65(2014), No. 10, p. 1033.

    Article  CAS  Google Scholar 

  17. I. Diaz, H. Cano, D. De La Fuente, B. Chico, J.M. Vega, and M. Morcillo, Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity, Corros. Sci., 76(2013), p. 348.

    Article  CAS  Google Scholar 

  18. H. Cano, D. Neff, M. Morcillo, P. Dillmann, I. Diaz, and D. De La Fuente, Characterization of corrosion products formed on Ni 2.4wt%−Cu 0.5wt%−Cr 0.5wt% weathering steel exposed in marine atmospheres, Corros. Sci., 87(2014), p. 438.

    Article  CAS  Google Scholar 

  19. J.H. Jia, W. Wu, X.Q. Cheng, and J.B. Zhao, Ni-advanced weathering steels in Maldives for two years: Corrosion results of tropical marine field test, Constr. Build. Mater., 245(2020), art. No. 118463.

  20. J.H. Jia, X.Q. Cheng, X.J. Yang, X.G. Li, and W. Li, A study for corrosion behavior of a new-type weathering steel used in harsh marine environment, Constr. Build. Mater., 259(2020), art. No. 119760.

  21. E.D. Fan, S.Q. Zhang, D.H. Xie, Q.Y. Zhao, X.G. Li, and Y.H. Huang, Effect of nanosized NbC precipitates on hydrogen-induced cracking of high-strength low-alloy steel, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 249.

    Article  CAS  Google Scholar 

  22. V.F.C. Lins, R.B. Soares, and E.A. Alvarenga, Corrosion behaviour of experimental copper-antimony-molybdenum carbon steels in industrial and marine atmospheres and in a sulphuric acid aqueous solution, Corros. Eng. Sci. Technol., 52(2017), No. 5, p. 397.

    Article  CAS  Google Scholar 

  23. N.D. Nam and J.G. Kim, Effect of niobium on the corrosion behaviour of low alloy steel in sulfuric acid solution, Corros. Sci., 52(2010), No. 10, p. 3377.

    Article  CAS  Google Scholar 

  24. D.P. Le, W.S. Ji, J.G. Kim, K.J. Jeong, and S.H. Lee, Effect of antimony on the corrosion behavior of low-alloy steel for flue gas desulfurization system, Corros. Sci., 50(2008), No. 4, p. 1195.

    Article  CAS  Google Scholar 

  25. S.S. El-Egamy, Electrochemical behavior of antimony and antimony oxide films in acid solutions, Corrosion, 62(2006), No. 9, p. 739.

    Article  CAS  Google Scholar 

  26. S.A. Park, S.H. Kim, Y.H. Yoo, and J.G. Kim, Effect of chloride ions on the corrosion behavior of low-alloy steel containing copper and antimony in sulfuric acid solution, Met. Mater. Int., 21(2015), No. 3, p. 470.

    Article  CAS  Google Scholar 

  27. Y. Yang, X.Q. Cheng, J.B. Zhao, Y. Fan, and X.G. Li, A study of rust layer of low alloy structural steel containing 0.1% Sb in atmospheric environment of the Yellow Sea in China, Corros. Sci., 188(2021), art. No. 109549.

  28. C. Liu, R.I. Revilla, D.W. Zhang, Z.Y. Liu, A. Lutz, F. Zhang, T.L. Zhao, H.C. Ma, X.G. Li, and H. Terryn, Role of Al2O3 inclusions on the localized corrosion of Q460NH weathering steel in marine environment, Corros. Sci., 138(2018), p. 96.

    Article  CAS  Google Scholar 

  29. C.F. Dong, H. Luo, K. Xiao, Y. Ding, P.H. Li, and X.G. Li, Electrochemical behavior of 304 stainless steel in marine atmosphere and its simulated solution, Anal. Lett., 46(2013), No. 1, p. 142.

    Article  Google Scholar 

  30. C. Thee, L. Hao, J.H. Dong, X. Mu, X. Wei, X.F. Li, and W. Ke, Atmospheric corrosion monitoring of a weathering steel under an electrolyte film in cyclic wet-dry condition, Corros. Sci., 78(2014), p. 130.

    Article  CAS  Google Scholar 

  31. W. Wu, Z.P. Zeng, X.Q. Cheng, X.G. Li, and B. Liu, Atmospheric corrosion behavior and mechanism of a Ni-advanced weathering steel in simulated tropical marine environment, J. Mater. Eng. Perform., 26(2017), No. 12, p. 6075.

    Article  CAS  Google Scholar 

  32. M.A. Arafin and J.A. Szpunar, Effect of bainitic microstructure on the susceptibility of pipeline steels to hydrogen induced cracking, Mater. Sci. Eng. A, 528(2011), No. 15, p. 4927.

    Article  CAS  Google Scholar 

  33. H.Y. Tian, X. Wang, Z.Y. Cui, Q.K. Lu, L.W. Wang, L. Lei, Y. Li, and D.W. Zhang, Electrochemical corrosion, hydrogen permeation and stress corrosion cracking behavior of E690 steel in thiosulfate-containing artificial seawater, Corros. Sci., 144(2018), p. 145.

    Article  CAS  Google Scholar 

  34. N. Takayama, G. Miyamoto, and T. Furuhara, Chemistry and three-dimensional morphology of martensite-austenite constituent in the bainite structure of low-carbon low-alloy steels, Acta Mater., 145(2018), p. 154.

    Article  CAS  Google Scholar 

  35. J. Zhang, H. Ding, R.D.K. Misra, and C. Wang, Microstructural evolution and consequent strengthening through niobium-microalloying in a low carbon quenched and partitioned steel, Mater. Sci. Eng. A, 641(2015), p. 242.

    Article  CAS  Google Scholar 

  36. I. Dey, S. Chandra, R. Saha, and S.K. Ghosh, Effect of Nb micro-alloying on microstructure and properties of thermo-mechanically processed high carbon pearlitic steel, Mater. Charact., 140(2018), p. 45.

    Article  CAS  Google Scholar 

  37. S.Q. Zhang, E.D. Fan, J.F. Wan, J. Liu, Y.H. Huang, and X.G. Li, Effect of Nb on the hydrogen-induced cracking of high-strength low-alloy steel, Corros. Sci., 139(2018), p. 83.

    Article  CAS  Google Scholar 

  38. H.M. Zhang, Y. Li, L. Yan, F.F. Ai, Y.Y. Zhu, and Z.J. Jiang, Effect of large load on the wear and corrosion behavior of high-strength EH47 hull steel in 3.5wt% NaCl solution with sand, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1525.

    Article  CAS  Google Scholar 

  39. N. Malatji, A.P.I. Popoola, T. Lengopeng, and S. Pityana, Effect of Nb addition on the microstructural, mechanical and electrochemical characteristics of AlCrFeNiCu high-entropy alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1332.

    Article  CAS  Google Scholar 

  40. G. Baril, G. Galicia, C. Deslouis, N. Pébère, B. Tribollet, and V. Vivier, An impedance investigation of the mechanism of pure magnesium corrosion in sodium sulfate solutions, J. Electrochem. Soc., 154(2007), No. 2, art. No. C108.

  41. Y.G. Yang, T. Zhang, Y.W. Shao, G.Z. Meng, and F.H. Wang, Effect of hydrostatic pressure on the corrosion behaviour of Ni−Cr−Mo−V high strength steel, Corros. Sci., 52(2010), No. 8, p. 2697.

    Article  CAS  Google Scholar 

  42. G. Baril and N. Pébère, The corrosion of pure magnesium in aerated and deaerated sodium sulphate solutions, Corros. Sci., 43(2001), No. 3, p. 471.

    Article  CAS  Google Scholar 

  43. T.L. Zhao, Z.Y. Liu, C.W. Du, M.H. Sun, and X.G. Li, Effects of cathodic polarization on corrosion fatigue life of E690 steel in simulated seawater, Int. J. Fatigue, 110(2018), p. 105.

    Article  CAS  Google Scholar 

  44. J.L. Yang, Y.F. Lu, Z.H. Guo, J.F. Gu, and C.X. Gu, Corrosion behaviour of a quenched and partitioned medium carbon steel in 3.5 wt.% NaCl solution, Corros. Sci., 130(2018), p. 64.

    Article  CAS  Google Scholar 

  45. B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani, Determination of effective capacitance and film thickness from constant-phase-element parameters, Electrochim. Acta, 55(2010), No. 21, p. 6218.

    Article  CAS  Google Scholar 

  46. O.E. Barcia, E. D’Elia, I. Frateur, O.R. Mattos, N. Pébère, and B. Tribollet, Application of the impedance model of de levie for the characterization of porous electrodes, Electrochim. Acta, 47(2002), No. 13–14, p. 2109.

    Article  CAS  Google Scholar 

  47. W.K. Hao, Z.Y. Liu, W. Wu, X.G. Li, C.W. Du, and D.W. Zhang, Electrochemical characterization and stress corrosion cracking of E690 high strength steel in wet-dry cyclic marine environments, Mater. Sci. Eng. A, 710(2018), p. 318.

    Article  CAS  Google Scholar 

  48. W.R. Osório, L.C. Peixoto, L.R. Garcia, and A. Garcia, Electrochemical corrosion response of a low carbon heat treated steel in a NaCl solution, Mater. Corros., 60(2009), No. 10, p. 804.

    Article  Google Scholar 

  49. S.Y. Huang, W. Wu, Y.J. Su, L.J. Qiao, and Y. Yan, Insight into the corrosion behaviour and degradation mechanism of pure zinc in simulated body fluid, Corros. Sci., 178(2021), art. No. 109071.

  50. M. Yamashita, H. Konishi, T. Kozakura, J. Mizuki, and H. Uchida, In situ observation of initial rust formation process on carbon steel under Na2SO4 and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays, Corros. Sci., 47(2005), No. 10, p. 2492.

    Article  CAS  Google Scholar 

  51. W. Wu, Z.Y. Dai, Z.Y. Liu, C. Liu, and X.G. Li, Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion, Corros. Sci., 183(2021), art. No. 109353.

  52. M. Morcillo, I. Díaz, B. Chico, H. Cano, and D. De La Fuente, Weathering steels: From empirical development to scientific design. A review, Corros. Sci., 83(2014), p. 6.

    Article  CAS  Google Scholar 

  53. T.Y. Zhang, W. Liu, Z. Yin, B.J. Dong, Y.G. Zhao, Y.M. Fan, J.S. Wu, Z. Zhang, and X.G. Li, Effects of the addition of Cu and Ni on the corrosion behavior of weathering steels in corrosive industrial environments, J. Mater. Eng. Perform., 29(2020), No. 4, p. 2531.

    Article  CAS  Google Scholar 

  54. M. Morcillo, I. Díaz, H. Cano, B. Chico, and D. De La Fuente, Atmospheric corrosion of weathering steels. Overview for engineers. Part II: Testing, inspection, maintenance, Constr. Build. Mater., 222(2019), p. 750.

    Article  Google Scholar 

  55. D. De La Fuente, I. Díaz, J. Simancas, B. Chico, and M. Morcillo, Long-term atmospheric corrosion of mild steel, Corros. Sci., 53(2011), No. 2, p. 604.

    Article  CAS  Google Scholar 

  56. J. Aramendia, L. Gomez-Nubla, I. Arrizabalaga, N. Prieto-Taboada, K. Castro, and J.M. Madariaga, Multianalytical approach to study the dissolution process of weathering steel: The role of urban pollution, Corros. Sci., 76(2013), p. 154.

    Article  CAS  Google Scholar 

  57. J.R. Galvele, Transport processes and the mechanism of pitting of metals, J. Electrochem. Soc., 123(1976), No. 4, p. 464.

    Article  CAS  Google Scholar 

  58. R. Newman, Pitting corrosion of metals, Electrochem. Soc. Interface, 19(2010), No. 1, p. 33.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52101068) and the China Postdoctoral Science Foundation (No. 2022M710348).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Longfei Song or Zhiyong Liu.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Zhu, L., Chai, P. et al. Atmospheric corrosion behavior of Nb- and Sb-added weathering steels exposed to the South China Sea. Int J Miner Metall Mater 29, 2041–2052 (2022). https://doi.org/10.1007/s12613-021-2383-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2383-2

Keywords

Navigation