Skip to main content

Advertisement

Log in

Effects of microstructure characteristics on the tensile properties and fracture toughness of TA15 alloy fabricated by hot isostatic pressing

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Powder hot isostatic pressing (HIP) is an effective method to achieve near-net-shape manufacturing of high-quality complex thin-walled titanium alloy parts, and it has received extensive attention in recent years. However, there are few reports about the microstructure characteristics on the strengthening and toughening mechanisms of powder hot isostatic pressed (HIPed) titanium alloys. Therefore, TA15 powder was prepared into alloy by HIP approach, which was used to explore the microstructure characteristics at different HIP temperatures and the corresponding tensile properties and fracture toughness. Results show that the fabricated alloy has a “basket-like structure” when the HIP temperature is below 950°C, consisting of lath clusters and surrounding small equiaxed grains belts. When the HIP temperature is higher than 950°C, the microstructure gradually transforms into the Widmanstatten structure, accompanied by a significant increase in grain size. The tensile strength and elongation are reduced from 948 MPa and 17.3% for the 910°C specimen to 861 MPa and 10% for the 970°C specimen. The corresponding tensile fracture mode changes from transcrystalline plastic fracture to mixed fracture including intercrystalline cleavage. The fracture toughness of the specimens increases from 82.64 MPa·m1/2 for the 910°C specimen to 140.18 MPa·m1/2 for the 970°C specimen. Specimens below 950°C tend to form holes due to the prior particle boundaries (PPBs), which is not conducive to toughening. Specimens above 950°C have high fracture toughness due to the crack deflection, crack branching, and shear plastic deformation of the Widmanstatten structure. This study provides a valid reference for the development of powder HIPed titanium alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Xu, R.P. Guo, Z.Y. Chen, Q. Jia, and Q.J. Wang, Mechanical property of powder compact and forming of large thin-wall cylindrical structure of Ti55 alloys, Chin. J. Mater. Res., 30(2016), No. 1, p. 23.

    Google Scholar 

  2. R. Baccino, F. Moret, F. Pellerin, D. Guichard, and G. Raisson, High performance and high complexity net shape parts for gas turbines: The ISOPREC® powder metallurgy process, Mater. Des., 21(2000), No. 4, p. 345.

    Article  CAS  Google Scholar 

  3. Y. Pan, X. Lu, C.C. Liu, T.L. Hui, C. Zhang, and X.H. Qu, Sintering densification, microstructure and mechanical properties of Sn-doped high Nb-containing TiAl alloys fabricated by pressureless sintering, Intermetallics, 125(2020), art. No. 106891.

  4. X. Lu, Y. Pan, W.B. Li, M.D. Hayat, F. Yang, H. Singh, W.W. Song, X.H. Qu, Y. Xu, and P. Cao, High-performance Ti composites reinforced with in situ TiC derived from pyrolysis of polycarbosilane, Mater. Sci. Eng. A, 795(2020), art. No. 139924.

  5. X.H. Qu, G.Q. Zhang, and L. Zhang, Applications of powder metallurgy technologies in aero-engines, J. Aeronaut. Mater., 34(2014), No. 1, p. 1.

    CAS  Google Scholar 

  6. N.R. Moody, W.M. Garrison, J.E. Smugeresky, and J.E. Costa, The role of inclusion and pore content on the fracture toughness of powder-processed blended elemental titanium alloys, Metall. Trans. A, 24(1993), No. 1, p. 161.

    Article  Google Scholar 

  7. Y. Pan, W.B. Li, X. Lu, M.D. Hayat, L. Yin, W.W. Song, X.H. Qu, and P. Cao, Microstructure and tribological properties of titanium matrix composites reinforced with in situ synthesized TiC particles, Mater. Charact., 170(2020), art. No. 110633.

  8. Y. Pan, W.B. Li, X. Lu, Y.C. Yang, Y.J. Liu, T.L. Hui, and X.H. Qu, Microstructure and mechanical properties of polycarbosilane in-situ reinforced titanium matrix composites, Rare Met. Mater. Eng., 49(2020), No. 4, p. 1345.

    CAS  Google Scholar 

  9. M.E. Launey and R.O. Ritchie, On the fracture toughness of advanced materials, Adv. Mater., 21(2009), No. 20, p. 2103.

    Article  CAS  Google Scholar 

  10. C.S. Tan, Y.D. Fan, Q.Y. Sun, and G.J. Zhang, Improvement of the crack propagation resistance in an α + β titanium alloy with a trimodal microstructure, Metals, 10(2020), No. 8, art. No. 1058.

  11. M. Niinomi and T. Kobayashi, Fracture characteristics analysis related to the microstructures in titanium alloys, Mater. Sci. Eng. A, 213(1996), No. 1–2, p. 16.

    Article  Google Scholar 

  12. F. Cao, Fatigue Behavior and Mechanisms in Powder Metallurgy Ti-6Al-4V Titanium Alloy [Dissertation], The University of Utah, Salt Lake City, 2016.

    Google Scholar 

  13. H. Singh, M. Hayat, H.Z. Zhang, R. Das, and P. Cao, Effect of TiB2 content on microstructure and properties of in situ Ti-TiB composites, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 915.

    Article  CAS  Google Scholar 

  14. L. Wang, Z.B. Lang, and H.P. Shi, Properties and forming process of prealloyed powder metallurgy Ti-6Al-4V alloy, Trans. Nonferrous Met. Soc. China, 17(2007), Suppl. 1, p. s639.

    Google Scholar 

  15. A.A. Hidalgo, R. Frykholm, T. Ebel, and F. Pyczak, Powder metallurgy strategies to improve properties and processing of titanium alloys: A review, Adv. Eng. Mater., 19(2017), No. 6, art. No. 1600743.

  16. J.W. Xu, W.D. Zeng, D.D. Zhou, H.Y. Ma, W. Chen, and S.T. He, Influence of alpha/beta processing on fracture toughness for a two-phase titanium alloy, Mater. Sci. Eng. A, 731(2018), p. 85.

    Article  CAS  Google Scholar 

  17. M. Niinomi and T. Kobayashi, Toughness and strength of microstructurally controlled titanium alloys, ISIJ Int., 31(1991), No. 8, p. 848.

    Article  CAS  Google Scholar 

  18. X. Wen, M.P. Wan, C.W. Huang, and M. Lei, Strength and fracture toughness of TC21 alloy with multi-level lamellar microstructure, Mater. Sci. Eng. A, 740–741(2019), p. 121.

    Article  Google Scholar 

  19. R.P. Guo, L. Xu, J. Wu, R. Yang, and B.Y. Zong, Microstructural evolution and mechanical properties of powder metallurgy Ti-6Al-4V alloy based on heat response, Mater. Sci. Eng. A, 639(2015), p. 327.

    Article  CAS  Google Scholar 

  20. H.W. Wang, Z.J. Guo, and J. Wang, Study on microstructure and fracture toughness of TA15 alloy, Rare Met. Mater. Eng., 34(2005), Suppl. 3, p. 293.

    Google Scholar 

  21. H.E. Dève, A.G. Evens, and D.S. Shih, A high-toughness γ-titanium aluminide, Acta Metall. Mater., 40(1992), No. 6, p. 1259.

    Article  Google Scholar 

  22. K. Zhang, J. Mei, N. Wain, and X. Wu, Effect of hot-isostatic-pressing parameters on the microstructure and properties of powder Ti-6Al-4V hot-isostatically-pressed samples, Metall. Mater. Trans. A, 41(2010), No. 4, p. 1033.

    Article  Google Scholar 

  23. C. Cai, B. Song, P.J. Xue, Q.S. Wei, C.Z. Yan, and Y.S. Shi, A novel near α-Ti alloy prepared by hot isostatic pressing: Microstructure evolution mechanism and high temperature tensile properties, Mater. Des., 106(2016), p. 371.

    Article  CAS  Google Scholar 

  24. R.P. Guo, L. Xu, Z.Y. Chen, Q.J. Wang, B.Y. Zong, and R. Yang, Effect of powder surface state on microstructure and tensile properties of a novel near α-Ti alloy using hot isostatic pressing, Mater. Sci. Eng. A, 706(2017), p. 57.

    Article  CAS  Google Scholar 

  25. Q. Wang, Z. Wen, C. Jiang, B. Wang, and D.Q. Yi, Creep behaviour of TA15 alloy at elevated temperature, Mater. Sci. Eng. Powder Metall., 19(2014), No. 2, p. 171.

    Google Scholar 

  26. S.K. Li, S.X. Hui, W.J. Ye, Y. Yu, and B.Q. Xiong, Effects of microstructure on damage tolerance properties of TA15 ELI titanium alloy, Chin. J. Nonferrous Met., 17(2007), No. 7, p. 1119.

    CAS  Google Scholar 

  27. J.P. Hirth and F.H. Froes, Interrelations between fracture toughness and other mechanical properties in titanium alloys, Metall. Trans. A, 8(1977), No. 7, p. 1165.

    Article  Google Scholar 

  28. F.W. Chen, Y.L. Gu, G.L. Xu, Y.W. Cui, H. Chang, and L. Zhou, Improved fracture toughness by microalloying of Fe in Ti-6Al-4V, Mater. Des., 185(2020), art. No. 108251.

  29. Z.F. Shi, H.Z. Guo, J.W. Zhang, and J.N. Yin, Microstructure-fracture toughness relationships and toughening mechanism of TC21 titanium alloy with lamellar microstructure, Trans. Nonferrous Met. Soc. China, 28(2018), No. 12, p. 2440.

    Article  CAS  Google Scholar 

  30. A. Ghosh, S. Sivaprasad, A. Bhattacharjee, and S.K. Kar, Microstructure—fracture toughness correlation in an aircraft structural component alloy Ti-5Al-5V-5Mo-3Cr, Mater. Sci. Eng. A, 568(2013), p. 61.

    Article  CAS  Google Scholar 

  31. N.L. Richards, Quantitative evaluation of fracture toughness-microstructural relationships in alpha-beta titanium alloys, J. Mater. Eng. Perform., 13(2004), No. 2, p. 218.

    Article  CAS  Google Scholar 

  32. X.H. Shi, W.D. Zeng, and Q.Y. Zhao, The effects of lamellar features on the fracture toughness of Ti-17 titanium alloy, Mater. Sci. Eng. A, 636(2015), p. 543.

    Article  CAS  Google Scholar 

  33. T. Horiya, H.G. Suzuki, and T. Kishi, Effect of microstructure and impurity content on microcrack initiation and extension properties of Ti-6Al-4V alloys, Tetsu-to-Hagane, 75(1989), No. 12, p. 2250.

    Article  CAS  Google Scholar 

  34. Y. Kawabe and S. Muneki, Strengthening and toughening of titanium alloys, ISIJ Int., 31(1991), No. 8, p. 785.

    Article  CAS  Google Scholar 

  35. N.L. Richards, Prediction of crack deflection in titanium alloys with a platelet microstructure, J. Mater. Eng. Perform., 14(2005), No. 1, p. 91.

    Article  CAS  Google Scholar 

  36. Q.L. Zhang and X.W. Li, Effect of structure on fatigue properties and fracture toughness for TA15 titanium alloy, J. Mater. Eng., 2007, No. 7, p. 3.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51874037 and 51922004), the Beijing Natural Science Foundation (No. 2212035), the Fundamental Research Funds for the Central Universities (No. FRF-TP-19005C1Z), and the National Defense Basic Research Project (No. JCKY2017213004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Lu.

Additional information

Conflict of Interest

All authors have no financial/commercial conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Pan, Y., Liu, Y. et al. Effects of microstructure characteristics on the tensile properties and fracture toughness of TA15 alloy fabricated by hot isostatic pressing. Int J Miner Metall Mater 30, 697–706 (2023). https://doi.org/10.1007/s12613-021-2371-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2371-6

Keywords

Navigation