Skip to main content
Log in

Characterization and ultraviolet—visible shielding property of samarium—cerium compounds containing Sm2O2S prepared by co-precipitation method

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Since ultraviolet (UV) light, as well as blue light, which is part of visible light, is harmful to skin, samarium—cerium compounds containing Sm2O2S were synthesized by co-precipitation method. This kind of compounds blocks not only UV light, but also blue light. The minimum values of average transmittance (360–450 nm) and band gap of samarium—cerium compounds were 8.90% and 2.76 eV, respectively, which were less than 13.96% and 3.01 eV of CeO2. Elemental analysis (EA), X-ray diffraction (XRD), Fourier transformation infrared (FTIR), and Raman spectra determined that the samples contained Ce4O7, Sm2O2S, Sm2O3, and Sm2O2SO4. The microstructure of samples was analyzed by scanning and transmission electron microscopies (SEM and TEM). X-ray photoelectron spectrum (XPS) showed that cerium had Ce3+ and Ce4+ valence states, and oxygen was divided into lattice oxygen and oxygen vacancy, which was the direct cause of the decrease of average transmittance and band gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Montazer, E. Pakdel, and M.B. Moghadam, Nano titanium dioxide on wool keratin as UV absorber stabilized by butane tetra carboxylic acid (BTCA): A statistical prospect, Fibers Polym., 11(2010), No. 7, p. 967.

    Article  CAS  Google Scholar 

  2. K. Lim, W.S. Chow, and S.Y. Pung, Enhancement of thermal stability and UV resistance of halloysite nanotubes using zinc oxide functionalization via a solvent-free approach, Int. J. Miner. Metall. Mater., 26(2019), No. 6, p. 787.

    Article  CAS  Google Scholar 

  3. S. Gangopadhyay, D.D. Frolov, A.E. Masunov, and S. Seal, Structure and properties of cerium oxides in bulk and nanoparticulate forms, J. Alloys Compd., 584(2014), p. 199.

    Article  CAS  Google Scholar 

  4. S.S. Zhang, J. Li, X.P. Guo, L.H. Liu, H. Wei, and Y.W. Zhang, Nanostructured composite films of ceria nanoparticles with anti-UV and scratch protection properties constructed using a layer-by-layer strategy, Appl. Surf. Sci., 382(2016), p. 316.

    Article  CAS  Google Scholar 

  5. C.W. Sun, H. Li, H.R. Zhang, Z.X. Wang, and L.Q. Chen, Controlled synthesis of CeO2 nanorods by a solvothermal method, Nanotechnology, 16(2005), No. 9, p. 1454.

    Article  CAS  Google Scholar 

  6. T. Pirmohamed, J.M. Dowding, S. Singh, B. Wasserman, E. Heckert, A.S. Karakoti, J.E.S. King, S. Seal, and W.T. Self, Nanoceria exhibit redox state-dependent catalase mimetic activity, Chem. Commun., 46(2010), No. 16, p. 2737.

    Article  CAS  Google Scholar 

  7. A.B. Shcherbakov, N.M. Zholobak, V.K. Ivanov, O.S. Ivanova, A.V. Marchevsky, A.E. Baranchikov, N.Y. Spivak, and Y.D. Tretyakov, Synthesis and antioxidant activity of biocompatible maltodextrin-stabilized aqueous sols of nanocrystalline ceria, Russ. J. Inorg. Chem., 57(2012), No. 11, p. 1411.

    Article  CAS  Google Scholar 

  8. X.C. Dai, Z.M. Tang, Y.H. Ju, N. Ni, H.Q. Gao, J.J. Wang, L.Q. Yin, A.L. Liu, S.J. Weng, J.H. Zhang, J. Zhang, and P. Gu, Effects of blue light-exposed retinal pigment epithelial cells on the process of ametropia, Biochem. Biophys. Res. Commun., 549(2021), p. 14.

    Article  CAS  Google Scholar 

  9. I. Dumitrescu, O.G. Iordache, C.E. Mitran, E. Perdum, I.M. Săndulache, L.O. Secăreanu, L.C. Dincă, A. Sobetkii, and L. Diamandescu, Attempts to improve the self-cleaning effect of the textile materials, Ind. Textilă, 71(2020), No. 3, p. 252.

    Article  CAS  Google Scholar 

  10. L.N. Chi, Y.J. Qian, J.Q. Guo, X.Z. Wang, H. Arandiyan, and Z. Jiang, Novel g-C3N4/TiO2/PAA/PTFE ultrafiltration membrane enabling enhanced antifouling and exceptional visible-light photocatalytic self-cleaning, Catal. Today, 335(2019), p. 527.

    Article  CAS  Google Scholar 

  11. K.S. Su, Y.Y. Tao, and J. Zhang, Highly transparent plasticized PVC composite film with ideal ultraviolet/high-energy short-wavelength blue light shielding, J. Mater. Sci., 56(2021), No. 30, p. 17353.

    Article  CAS  Google Scholar 

  12. M.R. Hamblin, Fullerenes as photosensitizers in photodynamic therapy: Pros and cons, Photochem. Photobiol. Sci., 17(2018), No. 11, p. 1515.

    Article  CAS  Google Scholar 

  13. A.M. Pires, O.A. Serra, and M.R. Davolos, Yttrium oxysulfide nanosized spherical particles doped with Yb and Er or Yb and Tm: Efficient materials for up-converting phosphor technology field, J. Alloys Compd., 374(2004), No. 1–2, p. 181.

    Article  CAS  Google Scholar 

  14. P.D. Han, X.G. Huang, and Q.T. Zhang, Laser stealth absorbent of samarium oxysulfide prepared by flux method, Rare Met., 30(2011), No. 6, p. 616.

    Article  CAS  Google Scholar 

  15. Y.P. Li, X. Bian, Y. Liu, W.Y. Wu, and G.F. Fu, Synthesis and characterization of ceria nanoparticles by complex-precipitation route, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 292.

    Article  CAS  Google Scholar 

  16. E. Matijević and W.P. Hsu, Preparation and properties of monodispersed colloidal particles of lanthanide compounds: I. Gadolinium, europium, terbium, samarium, and cerium(III), J. Colloid Interface Sci., 118(1987), No. 2, p. 506.

    Article  Google Scholar 

  17. A. Verma, N. Karar, A.K. Bakhshi, H. Chander, S.M. Shivaprasad, and S.A. Agnihotry, Structural, morphological and photoluminescence characteristics of sol—gel derived nano phase CeO2 films deposited using citric acid, J. Nanopart. Res., 9(2007), No. 2, p. 317.

    Article  CAS  Google Scholar 

  18. L.X. Yin, Y.Q. Wang, G.S. Pang, Y. Koltypin, and A. Gedanken, Sonochemical synthesis of cerium oxide nanoparticles-effect of additives and quantum size effect, J. Colloid Interface Sci., 246(2002), No. 1, p. 78.

    Article  CAS  Google Scholar 

  19. D.S. Zhang, H.X. Fu, L.Y. Shi, C.S. Pan, Q. Li, Y.L. Chu, and W.J. Yu, Synthesis of CeO2 nanorods via ultrasonication assisted by polyethylene glycol, Inorg. Chem., 46(2007), No. 7, p. 2446.

    Article  CAS  Google Scholar 

  20. Y.C. Zhou, R.J. Phillips, and J.A. Switzer, Electrochemical synthesis and sintering of nanocrystalline cerium(IV) oxide powders, J. Am. Ceram. Soc., 78(1995), No. 4, p. 981.

    Article  CAS  Google Scholar 

  21. J. Wang, W. Zeng, and Z.C. Wang, Assembly of 2D nanosheets into 3D flower-like NiO: Synthesis and the influence of petal thickness on gas-sensing properties, Ceram. Int., 42(2016), No. 3, p. 4567.

    Article  CAS  Google Scholar 

  22. Y. Chen, T.M. Liu, C.L. Chen, W.W. Guo, R. Sun, S.H. Lv, M. Saito, S. Tsukimoto, and Z.C. Wang, Synthesis and characterization of CeO2 nano-rods, Ceram. Int., 39(2013), No. 6, p. 6607.

    Article  CAS  Google Scholar 

  23. Y. Chen, S.H. Lv, C.L. Chen, C.J. Qiu, X.F. Fan, and Z.C. Wang, Controllable synthesis of ceria nanoparticles with uniform reactive {100} exposure planes, J. Phys. Chem. C, 118(2014), No. 8, p. 4437.

    Article  CAS  Google Scholar 

  24. M.L. Zhang, Y. Chen, C.J. Qiu, X.F. Fan, C.L. Chen, and Z.C. Wang, Synthesis and atomic-scale characterization of CeO2 nano-octahedrons, Physica E, 64(2014), p. 218.

    Article  CAS  Google Scholar 

  25. Y. Chen, T.M. Liu, C.L. Chen, W.W. Guo, R. Sun, S.H. Lv, M. Saito, S. Tsukimoto, and Z.C. Wang, Hydrothermal synthesis of ceria hybrid architectures of nano-rods and nano-octahedrons, Mater. Lett., 96(2013), p. 210.

    Article  CAS  Google Scholar 

  26. Y. Chen, C.J. Qiu, C.L. Chen, X.F. Fan, S.B. Xu, W.W. Guo, and Z.C. Wang, Facile synthesis of ceria nanospheres by Ce(OH)CO3 precursors, Mater. Lett., 122(2014), p. 90.

    Article  CAS  Google Scholar 

  27. P.F. Hu, Y. Chen, R. Sun, Y. Chen, Y.R. Yin, and Z.C. Wang, Synthesis, characterization and frictional wear behavior of ceria hybrid architectures with {111} exposure planes, Appl. Surf. Sci., 401(2017), p. 100.

    Article  CAS  Google Scholar 

  28. C.L. Lo, J.G. Duh, B.S. Chiou, C.C. Peng, and L. Ozawa, Synthesis of Eu3+-activated yttrium oxysulfide red phosphor by flux fusion method, Mater. Chem. Phys., 71(2001), No. 2, p. 179.

    Article  CAS  Google Scholar 

  29. Y.H. Tseng, B.S. Chiou, C.C. Peng, and L. Ozawa, Spectral properties of Eu3+-activated yttrium oxysulfide red phosphor, Thin Solid Films, 330(1998), No. 2, p. 173.

    Article  CAS  Google Scholar 

  30. Y.J. Ding, L.X. Wang, Q.T. Zhang, and S.B. Pan, Enhanced luminescence of La3+-doped gadolinium oxysulfide with tunable crystalline size, J. Electron. Mater., 46(2017), No. 10, p. 5986.

    Article  CAS  Google Scholar 

  31. B.F. Lei, Y.L. Liu, G.B. Tang, Z.R. Ye, and C.S. Shi, Unusual afterglow properties of Tm3+ doped yttrium oxysulfide, Chem. Res. Chin. Univ., 24(2003), No. 5, p. 782.

    CAS  Google Scholar 

  32. A. Ishikawa, Y. Yamada, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, and K. Domen, Novel synthesis and photocatalytic activity of oxysulfide Sm2Ti2S2O5, Chem. Mater., 15(2003), No. 23, p. 4442.

    Article  CAS  Google Scholar 

  33. A.N. Georgobiani, A.A. Bogatyreva, V.M. Ishchenko, O.Y. Manashirov, V.B. Gutan, and S.V. Semendyaev, A new multifunctional phosphor based on yttrium oxysulfide, Inorg. Mater., 43(2007), No. 10, p. 1073.

    Article  CAS  Google Scholar 

  34. S. Altmannshofer and D. Johrendt, Synthesis, crystal structure and magnetism of the new oxysulfide Ce3NbO4S3, Z. Anorg. Allg. Chem., 634(2008), No. 8, p. 1361.

    Article  CAS  Google Scholar 

  35. F. Zhao, M. Yuan, W. Zhang, and S. Gao, Monodisperse lanthanide oxysulfide nanocrystals, J. Am. Chem. Soc., 128(2006), No. 36, p. 11758.

    Article  CAS  Google Scholar 

  36. R.V. Rodrigues, L.C. Machado, J.R. Matos, E.J.B. Muri, A.A.L. Marins, H.F. Brito, and C.A.C. Passos, Oxysulfate/oxysulfide of Tb3+ obtained by thermal decomposition of terbium sulfate hydrates under different atmospheres, J. Therm. Anal. Calorim., 122(2015), No. 2, p. 765.

    Article  CAS  Google Scholar 

  37. T. Hirai and T. Orikoshi, Preparation of Gd2O3: Yb, Er and Gd2O2S: Yb, Er infrared-to-visible conversion phosphor ultrafine particles using an emulsion liquid membrane system, J. Colloid Interface Sci., 269(2004), No. 1, p. 103.

    Article  CAS  Google Scholar 

  38. J. Thirumalai, R. Chandramohan, S. Auluck, T. Mahalingam, and S.R. Srikumar, Controlled synthesis, optical and electronic properties of Eu3+ doped yttrium oxysulfide (Y2O2S) nanostructures, J. Colloid Interface Sci., 336(2009), No. 2, p. 889.

    Article  CAS  Google Scholar 

  39. J.B. Lian, X.D. Sun, J.G. Li, and X.D. Li, Synthesis, characterization and photoluminescence properties of (Gd0.99, Pr0.01)2O2S sub-microphosphor by homogeneous precipitation method, Opt. Mater., 33(2011), No. 4, p. 596.

    Article  CAS  Google Scholar 

  40. J. Cichos, M. Karbowiak, D. Hreniak, and W. Stręk, Synthesis and characterization of monodisperse Eu3+ doped gadolinium oxysulfide nanocrystals, J. Rare Earths, 34(2016), No. 8, p. 850.

    Article  CAS  Google Scholar 

  41. K. Ueda, S. Inoue, S. Hirose, H. Kawazoe, and H. Hosono, Transparent p-type semiconductor: LaCuOS layered oxysulfide, Appl. Phys. Lett., 77(2000), No. 17, p. 2701.

    Article  CAS  Google Scholar 

  42. J. Dhanaraj, M. Geethalakshmi, R. Jagannathan, and T.R.N. Kutty, Eu3+ doped yttrium oxysulfide nanocrystals—crystallite size and luminescence transition(s), Chem. Phys. Lett., 387(2004), No. 1–3, p. 23.

    Article  CAS  Google Scholar 

  43. V.V. Bakovets, T.M. Levashova, I.Y. Filatova, E.A. Maksimovskii, and A.E. Kupcha, Vapor phase growth of nanostructured yttrium oxysulfide films, Inorg. Mater., 44(2008), No. 1, p. 67.

    Article  CAS  Google Scholar 

  44. J. Tauc, R. Grigorovici, and A. Vancu, Optical properties and electronic structure of amorphous germanium, Phys. Status Solidi B, 15(1966), No. 2, p. 627.

    Article  CAS  Google Scholar 

  45. E.A. Davis and N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors, Philos. Mag., 22(1970), No. 179, p. 0903.

    Article  CAS  Google Scholar 

  46. B.C. Qiu, C. Wang, N. Zhang, L.J. Cai, Y.J. Xiong, and Y. Chai, CeO2-induced interfacial Co2+ octahedral sites and oxygen vacancies for water oxidation, ACS Catal., 9(2019), No. 7, p. 6484.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Major State Basic Research Development Program of China (973 Program) (No. 2012CBA01205) and the National Natural Science Foundation of China (No. 51274060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Bian.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Bian, X., Jin, X. et al. Characterization and ultraviolet—visible shielding property of samarium—cerium compounds containing Sm2O2S prepared by co-precipitation method. Int J Miner Metall Mater 29, 1809–1816 (2022). https://doi.org/10.1007/s12613-021-2309-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2309-z

Keywords

Navigation