Skip to main content
Log in

Evolution laws of microstructures and mechanical properties during heat treatments for near-α high-temperature titanium alloys

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Evolution laws of microstructures, mechanical properties, and fractographs after different solution temperatures were investigated through various analysis methods. With the increasing solution temperatures, contents of the primary α phase decreased, and contents of transformed β structures increased. Lamellar α grains dominated the characteristics of transformed β structures, and widths of secondary α lamellas increased monotonously. For as-forged alloy, large silicides with equiaxed and rod-like morphologies, and nano-scale silicides were found. Silicides with large sizes might be (Ti, Zr, Nb)5Si3 and (Ti, Zr, Nb)6Si3. Rod-like silicides with small sizes precipitated in retained β phase, exhibiting near 45° angles with α/β boundaries. Retained β phases in as-heat treated alloys were incontinuous. 980STA exhibited an excellent combination of room temperature (RT) and 650°C mechanical properties. Characteristics of fracture surfaces largely depended on the evolutions of microstructures. Meanwhile, silicides promoted the formation of mico-voids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.J. Jiang, R. Jing, C.Y. Liu, M.Z. Ma, and R.P. Liu, Structure and mechanical properties of TiZr binary alloy after Al addition, Mater. Sci. Eng. A, 586(2013), p. 301.

    Article  CAS  Google Scholar 

  2. P. Parvizian, M. Morakabati, and S. Sadeghpour, Effect of hot rolling and annealing temperatures on the microstructure and mechanical properties of SP-700 alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 374.

    Article  CAS  Google Scholar 

  3. J.C. Williams and E.A. Starke Jr, Progress in structural materials for aerospace systems, Acta Mater., 51(2003), No. 19, p. 5775.

    Article  CAS  Google Scholar 

  4. L. Yang, B.Y. Wang, J.G. Lin, H.J. Zhao, and W.Y. Ma, Ductile fracture behavior of TA15 titanium alloy at elevated temperatures, Int. J. Miner. Metall. Mater., 22(2015), No. 10, p. 1082.

    Article  CAS  Google Scholar 

  5. R. Boyer, G. Welsch, and E. Collings, Materials Properties Handbook: Titanium Alloys, 1994.

  6. K. Prasad, R. Sarkar, P. Ghosal, D.V.V. Satyanarayana, S.V. Kamat, and T.K. Nandy, Tensile and creep properties of thermomechanically processed boron modified Timetal 834 titanium alloy, Mater. Sci. Eng. A, 528(2011), No. 22–23, p. 6733.

    Article  CAS  Google Scholar 

  7. V.K. Chandravanshi, A. Bhattacharjee, S.V. Kamat, and T.K. Nandy, Influence of thermomechanical processing and heat treatment on microstructure, tensile properties and fracture toughness of Ti-1100-0.1B alloy, J. Alloys Compd., 589(2014), p. 336.

    Article  CAS  Google Scholar 

  8. S.A.A. Shams, S. Mirdamadi, S.M. Abbasi, Y. Lee, and C.S. Lee, Coarsening kinetics of primary alpha in a near alpha titanium alloy, J. Alloys Compd., 735(2018), p. 1769.

    Article  CAS  Google Scholar 

  9. Q.J. Wang, J.R. Liu, and R. Yang, High temperature titanium alloys: Status and perspective, J. Aeronaut. Mater., 34(2014), No. 4, p. 1.

    Google Scholar 

  10. P.L. Narayana, S.W. Kim, J.K. Hong, N.S. Reddy, and J.T. Yeom, Tensile properties of a newly developed high-temperature titanium alloy at room temperature and 650°C, Mater. Sci. Eng. A, 718(2018), p. 287.

    Article  CAS  Google Scholar 

  11. T. Li, L.H. Chai, S.H. Shi, et al., Effect of near-isothermal forging temperature on the microstructure and mechanical properties of near a high temperature titanium alloy, Mater. Sci. Forum, 898(2017), p. 579.

    Article  Google Scholar 

  12. P. Han, B.L. Li, J.M. Yin, T. Liu, and Z.R. Nie, Effect of Er on creep properties of a near-α high temperature titanium alloy, Sci. Technol. Eng., 12(2012), No. 17, p. 4124.

    Google Scholar 

  13. X.Z. Ma, L.H. Chai, Y.Y. Liu, et al., TiB whiskers stimulated the dynamic recrystallization behavior, J. Alloys Compd., 812(2020), art. No. 152152.

  14. Z.B. Zhao, Q.J. Wang, J.R. Liu, and R. Yang, Effect of heat treatment on the crystallographic orientation evolution in a near-α titanium alloy Ti60, Acta Mater., 131(2017), p. 305.

    Article  CAS  Google Scholar 

  15. X.Z. Ma, Z.L. Xiang, M.Z. Ma, Y.P. Cui, W.M. Ren, Z.T. Wang, J.C. Huang, and Z.Y. Chen, Investigation of microstructures, textures, mechanical properties and fracture behaviors of a newly developed near a titanium alloy, Mater. Sci. Eng. A, 775(2020), art. No. 138996.

  16. S.X. Liang, M.Z. Ma, R. Jing, X.Y. Zhang, and R.P. Liu, Microstructure and mechanical properties of hot-rolled ZrTiAlV alloys, Mater. Sci. Eng. A, 532(2012), p. 1.

    Article  CAS  Google Scholar 

  17. Y. Yue, L.Y. Dai, H. Zhong, C.L. Tan, M.Z. Ma, X.Y. Zhang, and R.P. Liu, Enhanced mechanical properties for mill-annealed Ti-20Zr-6.5Al-4V alloy with a fine equiaxed microstructure, Mater. Sci. Eng. A, 678(2016), p. 286.

    Article  CAS  Google Scholar 

  18. S.T. He, W.D. Zeng, J.W. Xu, and W. Chen, The effects of microstructure evolution on the fracture toughness of BT-25 titanium alloy during isothermal forging and subsequent heat treatment, Mater. Sci. Eng. A, 745(2019), p. 203.

    Article  CAS  Google Scholar 

  19. J.R. Wood, P.A. Russo, M.F. Welter, and E.M. Crist, Thermomechanical processing and heat treatment of Ti-6Al-2Sn-2Zr-2Cr-2Mo-Si for structural applications, Mater. Sci. Eng. A, 243(1998), No. 1–2, p. 109.

    Article  Google Scholar 

  20. J.X. Li, L.Q. Wang, J.N. Qin, Y.F. Chen, W.J. Lu, and D. Zhang, Effect of TRIPLEX heat treatment on tensile properties of in situ synthesized (TiB + La2O3)/Ti composite, Mater. Sci. Eng. A, 527(2010), No. 21–22, p. 5811.

    Article  Google Scholar 

  21. S.M.C. van Bohemen, A. Kamp, R.H. Petrov, L.A.I. Kestens, and J. Sietsma, Nucleation and variant selection of secondary a plates in a β Ti alloy, Acta Mater., 56(2008), No. 20, p. 5907.

    Article  CAS  Google Scholar 

  22. S. Mironov, M. Murzinova, S. Zherebtsov, G.A. Salishchev, and S.L. Semiatin, Microstructure evolution during warm working of Ti-6Al-4V with a colony-α microstructure, Acta Mater., 57(2009), No. 8, p. 2470.

    Article  CAS  Google Scholar 

  23. J.X. Li, L.Q. Wang, J.N. Qin, Y.F. Chen, W.J. Lu, and D. Zhang, The effect of heat treatment on thermal stability of Ti matrix composite, J. Alloys Compd., 509(2011), No. 1, p. 52.

    Article  CAS  Google Scholar 

  24. A.K. Singh, C. Ramachandra, and V. Singh, Orientation relationship between matrix phases and silicide S2 in alloy Ti-6Al-1.6Zr-3.3Mo-0.3Si, J. Mater. Sci. Lett., 11(1992), No. 4, p. 218.

    Article  CAS  Google Scholar 

  25. W.J. Jia, W.D. Zeng, and H.Q. Yu, Effect of aging on the tensile properties and microstructures of a near-alpha titanium alloy, Mater. Des., 58(2014), p. 108.

    Article  CAS  Google Scholar 

  26. C.J. Zhang, X. Li, S.Z. Zhang, L.H. Chai, Z.Y. Chen, F.T. Kong, and Y.Y. Chen, Effects of direct rolling deformation on the microstructure and tensile properties of the 2.5 vol% (TiBw+TiCp)/Ti composites, Mater. Sci. Eng. A, 684(2017), p. 645.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the support of Industrial Strengthen Foundation Project of Ministry of Industry and Information Technology, PRC (TC150B5C0-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyong Chen.

Additional information

Conflict of Interest

The authors declared that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Xiang, Z., Li, T. et al. Evolution laws of microstructures and mechanical properties during heat treatments for near-α high-temperature titanium alloys. Int J Miner Metall Mater 29, 1596–1607 (2022). https://doi.org/10.1007/s12613-021-2248-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2248-8

Keywords

Navigation