Skip to main content
Log in

Activity coefficient of NiO in SiO2-saturated MnO-SiO2 slag and Al2O3-saturated MnO-SiO2-Al2O3 slag at 1623 K

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

As a part of the fundamental study related to the reduction smelting of spent lithium-ion batteries and ocean polymetallic nodules based on MnO-SiO2 slags, this work investigated the activity coefficient of NiO in SiO2-saturated MnO-SiO2 slag and Al2O3-saturated MnO-SiO2-Al2O3 slag at 1623 K with controlled oxygen partial pressure levels of 10−7, 10−6, and 10−5 Pa. Results showed that the solubility of nickel oxide in the slags increased with increasing oxygen partial pressure. The nickel in the MnO-SiO2 slag and MnO-SiO2-Al2O3 slag existed as NiO under experimental conditions. The addition of Al2O3 in the MnO-SiO2 slag decreased the dissolution of nickel in the slag and increased the activity coefficient of NiO. Furthermore, the activity coefficient of NiO (γNiO), which is solid NiO, in the SiO2 saturated MnO-SiO2 slag and Al2O3 saturated MnO-SiO2-Al2O3 slag at 1623 K can be respectively calculated as γNiO = 8.58w(NiO) + 3.18 and γNiO = 11.06w(NiO) + 4.07, respectively, where w(NiO) is the NiO mass fraction in the slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Hanisch, J. Diekmann, A. Stieger, W. Haselrieder, and A. Kwade, Recycling of lithium-ion batteries, [in] Handbook of Clean Energy Systems, John Wiley & Sons, Ltd., Chichester, 2015, p. 1.

    Google Scholar 

  2. A. Home, LME Stock Surge Grounds High-Flying Nickel, But for How Long?, Jan Harve ed. Glacier Media Group, 2020 [2020-1-17]. https://www.mining.com/wm/lmo-stock-surge-grounds-high-flying-nickel-but-for-how-long/

  3. NetworkNewsWire, Electric Vehicle Growth Creates East-Asian Battery Mineral Boom, NetworkNewsWire, New York, 2020 [2020-4-10]. https://www.prnewswire.com/news-releases/electric-vehicle-growth-creates-east-asian-battery-mineral-boom301014990.html

  4. M.Y. Chen, X.T. Ma, B. Chen, R. Arsenault, P. Karlson, N. Simon, and Y. Wang, Recycling end-of-life electric vehicle lithium-ion batteries, Joule, 3(2019), No. 11, p. 2622.

    Article  CAS  Google Scholar 

  5. G.X. Ren, S.W. Xiao, M.Q. Xie, B. Pan, Y.Q. Fan, F.G. Wang, and X. Xia, Recovery of valuable metals from spent lithium-ion batteries by smelting reduction process based on MnO-SiO2-Al2O3 slag system, [in] Reddy R.G., Chaubal P., Pistorius P.C., Pal U. eds, Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016. Springer, Cham, 2016, p. 211.

    Google Scholar 

  6. P.K. Sen, Metals and materials from deep sea nodules: An outlook for the future, Int. Mater. Rev., 55(2010), No. 6, p. 364.

    Article  CAS  Google Scholar 

  7. G. Senanayake, Acid leaching of metals from deep-sea manganese nodules — A critical review of fundamentals and applications, Miner. Eng., 24(2011), No. 13, p. 1379.

    Article  CAS  Google Scholar 

  8. N.S. Randhawa, J. Hait, and R.K. Jana, A brief overview on manganese nodules processing signifying the detail in the Indian context highlighting the international scenario, Hydrometallurgy, 165(2016), p. 166.

    Article  CAS  Google Scholar 

  9. E.H. Jeong, C.W. Nam, K.H. Park, and J.H. Park, Sulfurization of Fe-Ni-Cu-Co alloy to matte phase by carbothermic reduction of calcium sulfate, Metall. Mater. Trans. B, 47(2016), No. 2, p. 1103.

    Article  CAS  Google Scholar 

  10. S. Agarwal, K.K. Sahu, R.K. Jana, and S.P. Mehrotra, Recovery of Cu, Ni, Co and Mn from sea nodules by direct reduction smelting, [in] Proceedings of the Eighth (2009) ISOPE Ocean Mining Symposium, Chennai, 2009, p. 131.

  11. D. Friedmann, A.K. Pophanken, and B. Friedrich, Pyrometallurgical treatment of high manganese containing deep sea nodules, J. Sustainable Metall., 3(2017), No. 2, p. 219.

    Article  Google Scholar 

  12. K.D. Mehta, C. Das, and B.D. Pandey, Leaching of copper, nickel and cobalt from Indian Ocean manganese nodules by Aspergillus niger, Hydrometallurgy, 105(2010), No. 1–2, p. 89.

    Article  CAS  Google Scholar 

  13. R. Barik, K. Sanjay, B.K. Mishra, and M. Mohapatra, Micellar mediated selective leaching of manganese nodule in high temperature sulfuric acid medium, Hydrometallurgy, 165(2016), p. 44.

    Article  CAS  Google Scholar 

  14. S.C. Das, Extraction of metals from polymetallic ocean nodules, [in] Proceeding National Symposium on Chemical and Allied Materials from Ocean, Calcutta, 1989, p. 9.

  15. S.W. Xiao, G.X. Ren, M.Q. Xie, B. Pan, Y.Q. Fan, F.G. Wang, and X. Xia, Recovery of valuable metals from spent lithium-ion batteries by smelting reduction process based on MnO-SiO2-Al2O3 slag system, J. Sustainable Metall., 3(2017), No. 4, p. 703.

    Article  Google Scholar 

  16. N.S. Randhawa, R.K. Jana, and N.N. Das, Silicomanganese production utilising low grade manganese nodules leaching residue, Miner. Process. Extr. Metall., 122(2013), No. 1, p. 6.

    Article  CAS  Google Scholar 

  17. M. Sommerfeld, D. Friedmann, T. Kuhn, and B. Friedrich, “zero-waste”: A sustainable approach on pyrometallurgical processing of manganese nodule slags, Minerals, 8(2018), No. 12, art. No. 544.

  18. E.J. Grimsey, The effect of temperature on nickel solubility in silica saturated fayalite slags from 1523 to 1623 K, Metall. Trans. B, 19(1988), No. 2, p. 243.

    Article  Google Scholar 

  19. R.G. Reddy and C.C. Acholonu, Distribution of nickel between copper-nickel and alumina saturated iron silicate slags, Metall. Trans. B, 15(1984), No. 1, p. 33.

    Article  Google Scholar 

  20. H.M. Henao, M. Hino, and K. Itagaki, Phase equilibrium between Ni-S melt and FeOX-SiO2 or FeOX-CaO based slag under controlled partial pressures, Mater. Trans., 43(2002), No. 9, p. 2219.

    Article  CAS  Google Scholar 

  21. Y. Takeda, S. Ishiwata, and A. Yazawa, Distribution equilibria of minor elements between liquid copper and calcium ferrite slag, Trans. Jpn. Inst. Met., 24(1983), No. 7, p. 518.

    Article  CAS  Google Scholar 

  22. R.U. Pagador, M. Hino, and K. Itagaki, Distribution of minor elements between MgO saturated FeOx-MgO-SiO2 or FeOx-CaO-MgO-SiO2 slag and nickel alloy, Mater. Trans., JIM, 40(1999), No. 3, p. 225.

    Article  CAS  Google Scholar 

  23. H. Henao, M. Hino, and K. Itagaki, Distribution of Ni, Cr, Mn, Co and Cu between Fe-Ni alloy and FeOx-MgO-SiO2 base slags, Mater. Trans., 42(2001), No. 9, p. 1959.

    Article  CAS  Google Scholar 

  24. G.Q. Li and F. Tsukihashi, Distribution equilibria of Fe, Co and Ni between MgO-saturated FeOx-MgO-SiO2 slag and Ni alloy, ISIJ Int., 41(2001), No. 11, p. 1303.

    Article  CAS  Google Scholar 

  25. H. Henao, M. Hino, and K. Itagaki, Phase equilibrium between Ni-S melt and CaO-Al2O3 based slag in CO-CO2-SO2 gas mixtures at 1773 K, Mater. Trans., 43(2002), No. 11, p. 2873.

    Article  CAS  Google Scholar 

  26. H.M. Henao and K. Itagaki, Phase equilibrium and distribution of minor elements between Ni-S melt and Al2O3-CaO-MgO slag at 1873 K, Metall. Mater. Trans. B, 35(2004), No. 6, p. 1041.

    Article  Google Scholar 

  27. X. Lu, T. Miki, and T. Nagasaka, Activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag and their application to the recycling of Ni-Co-Fe-based end-of-life superalloys via remelting, Int. J. Miner. Metall. Mater., 24(2017), No. 1, p. 25.

    Article  CAS  Google Scholar 

  28. G. Roghani, E. Jak, and P. Hayes, Phase equilibrium studies in the “MnO”-Al2O3-SiO2 system, Metall. Mater. Trans. B, 33(2002), No. 6, p. 827.

    Article  Google Scholar 

  29. S.H. Lee, S.M. Moon, D.J. Min, and J.H. Park, Thermodynamic behavior of nickel in CaO-SiO2-FetO slag, Metall. Mater. Trans. B, 33(2002), No. 1, p. 55.

    Article  Google Scholar 

  30. J.G. Park, H.S. Eom, W.W. Huh, Y.S. Lee, D.J. Min, and I. Sohn, A study in the thermodynamic behavior of nickel in the MgO-SiO2-FeO slag system, Steel Res. Int., 82(2011), No. 4, p. 415.

    Article  CAS  Google Scholar 

  31. E.J. Grimsey and X.L. Liu, The activity coefficient of cobalt oxide in silica-saturated iron silicate slags, Metall. Mater. Trans. B, 26(1995), No. 2, p. 229.

    Article  Google Scholar 

  32. B. Derin and O. Yücel, The distribution of cobalt between CoCu alloys and Al2O3-FeO-Fe2O3-SiO2 slags, Scand. J. Metall., 31(2002), No. 1, p. 12.

    Article  CAS  Google Scholar 

  33. C.C. Acholonu, Distribution of Copper, Cobalt, Nickel, Between Alloys and Silica-Unsaturated Iron Slags [Dissertation], University of Nevada, Reno, 1983, p. 9.

    Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (No. 51704038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Songwen Xiao or Zhihong Liu.

Additional information

Conflict of Interest

The authors declare no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, G., Xiao, S., Liao, C. et al. Activity coefficient of NiO in SiO2-saturated MnO-SiO2 slag and Al2O3-saturated MnO-SiO2-Al2O3 slag at 1623 K. Int J Miner Metall Mater 29, 248–255 (2022). https://doi.org/10.1007/s12613-020-2205-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2205-y

Keywords

Navigation