Skip to main content
Log in

Cite this article


Hydrogen metallurgy is a technology that applies hydrogen instead of carbon as a reduction agent to reduce CO2 emission, and the use of hydrogen is beneficial to promoting the sustainable development of the steel industry. Hydrogen metallurgy has numerous applications, such as H2 reduction ironmaking in Japan, ULCORED and hydrogen-based steelmaking in Europe; hydrogen flash ironmaking technology in the US; HYBRIT in the Nordics; Midrex H2™ by Midrex Technologies, Inc. (United States); H2FUTURE by Voestalpine (Austria); and SAL-COS by Salzgitter AG (Germany). Hydrogen-rich blast furnaces (BFs) with COG injection are common in China. Running BFs have been industrially tested by AnSteel, XuSteel, and BenSteel. In a currently under construction pilot plant of a coal gasification-gas-based shaft furnace with an annual output of 10000 t direct reduction iron (DRI), a reducing gas composed of 57vol% H2 and 38vol% CO is prepared via the Ende method. The life cycle of the coal gasification—gas-based shaft furnace—electric furnace short process (30wt% DRI + 70wt% scrap) is assessed with 1 t of molten steel as a functional unit. This plant has a total energy consumption per ton of steel of 263.67 kg standard coal and a CO2 emission per ton of steel of 829.89 kg, which are superior to those of a traditional BF converter process. Considering domestic materials and fuels, hydrogen production and storage, and hydrogen reduction characteristics, we believe that a hydrogen-rich shaft furnace will be suitable in China. Hydrogen production and storage with an economic and large-scale industrialization will promote the further development of a full hydrogen shaft furnace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions


  1. IEA, Explore Energy Data by Category, Indicator, Country or Region [0200-55-22]. https://www.iaa.rgg/aata-nnd-statistics?country=WORLD&fuel=CO2%20emissions&indicator=Total%20CO2%20emissions

  2. P. Zhao and P.L. Dong, Carbon emission cannot be ignored in future of Chinese steel industry, Iron Steel, 53(2018), No. 8, p. 1.

    CAS  Google Scholar 

  3. C. Bataille, M. Åhman, K. Neuhoff, L.J. Nilsson, M. Fischedick, S. Lechtenböhmer, B. Solano-Rodriquez, A. Denis-Ryan, S. Stiebert, H. Waisman, O. Sartor, and S. Rahbar, A review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris Agreement, J. Cleaner Prod., 187(2018), p. 960.

    Article  Google Scholar 

  4. B. Lotfi and E. Ahmed, Carbon footprint of the global pharmaceutical industry and relative impact of its major players, J. Cleaner Prod., 214(2019), p. 185.

    Article  Google Scholar 

  5. J.K. Sung, M.R. Kang, and S.O. Min, Addition of cerium and yttrium to ferritic steel weld metal to improve hydrogen trapping efficiency, Int. J. Miner. Metall. Mater., 24(2017), No. 4, p. 415.

    Article  Google Scholar 

  6. J.Z. Song, Z.Y. Zhao, X. Zhao, R.D. Fu, and S.M. Han, Hydrogen storage properties of MgH2 co-catalyzed by LaH3 and NbH, Int. J. Miner. Metall. Mater., 24(2017), No. 10, p. 1183.

    Article  CAS  Google Scholar 

  7. K.D. Xu, G.C. Jiang, and J.L. Xu, Theoretical analysis of steel production process in 21th century, [in] The 125th Xiangshan Scientific Conference Proceeding, Beijing, 1999, p. 31.

  8. K.D. Xu, National natural science foundation of China, [in] National Natural Science Foundation Proceeding, Shanghai, 2002.

  9. Y. Gan, The 21th century is the Age of Hydrogen [2020-05-22].

  10. R.R. Wang, J.L. Zhang, Y.R. Liu, A.Y. Zheng, Z.J. Liu, X.L. Liu, and Z.G. Li, Thermal performance and reduction kinetic analysis of cold-bonded pellets with CO and H2 mixtures, Int. J. Miner. Metall. Mater., 25(2018), No. 7, p. 752.

    Article  CAS  Google Scholar 

  11. C. Feng, M.S. Chu, J. Tang, and Z.G. Liu, Effects of smelting parameters on the slag/metal separation behaviors of Hongge vanadium-bearing titanomagnetite metallized pellets obtained from the gas-based direct reduction process, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 609.

    Article  CAS  Google Scholar 

  12. J. Tang, M.S. Chu, F. Li, Y.T. Tang, Z.G. Liu, and X.X. Xue, Reduction mechanism of high chromium vanadium-titanium magnetite pellet by H2-CO-CO2 gas mixtures, Int. J. Miner. Metall. Mater., 22(2015), No. 6, p. 562.

    Article  CAS  Google Scholar 

  13. T.L. Guo, M.S. Chu, Z.G. Liu, J. Tang, and J.I. Yagi, Mathematical modeling and exergy analysis of blast furnace operation with natural gas injection, Steel Res. Int., 84(2013), No. 4, p. 333.

    Article  CAS  Google Scholar 

  14. H.T. Wang, M.S. Chu, T.L. Guo, W. Zhao, C. Feng, Z.G. Liu, and J. Tang, Mathematical simulation on blast furnace operation of coke oven gas injection in combination with top gas recycling, Steel Res. Int., 87(2016), No. 5, p. 539.

    Article  CAS  Google Scholar 

  15. T. Ariyama, Perspective toward long-term global goal for carbon dioxide mitigation in steel industry, Tetsu-to-Hagané, 105(2019), No. 6, p. 567.

    Article  Google Scholar 

  16. S. Tonomura, Outline of course 50, Energy Procedia, 37(2013), p. 7160.

    Article  CAS  Google Scholar 

  17. S. Watakabe, K. Miyagawa, S. Matsuzaki, T. Inada, Y. Tomita, K. Saito, M. Osame, P. Sikström, L.S. Ökvist, and J.-O. Wikstrom, Operation trial of hydrogenous gas injection of COURSE50 project at an experimental blast furnace, ISIJ Int., 53(2013), No. 12, p. 2065.

    Article  CAS  Google Scholar 

  18. Z.K. Wei, R. Guo, and Q.A. Xie, COURSE50 new technology of Japan’s environmental ironmaking process, J. North China Univ. Sci. Technol. Nat. Sci. Ed., 40(2018), No. 3, p. 26.

    Google Scholar 

  19. A. Inoue, Efforts of Nippon Steel Corporation for global environmental problems, [in] The 12th CSM Steel Congress Proceeding, Beijing, 2019.

  20. Germany Officially Announced “Hydrogen Instead of Coal” Ironmaking, Is Hydrogen Metallurgy Feasible? [2020-05-22].

  21. M. Abdul Quader, S. Ahmed, S.Z. Dawal, and Y. Nukman, Present needs, recent progress and future trends of energy-efficient Ultra-Low Carbon Dioxide (CO2) Steelmaking (ULCOS) program, Renewable Sustainable Energy Rev., 55(2016), p. 537.

    Article  CAS  Google Scholar 

  22. J.X. Fu, G.H. Tang, R.J. Zhao, and W.S. Wang, Carbon reduction programs and key technologies in global steel industry, J. Iron Steel Rese. Int., 21(2014), No. 3, p. 275.

    Article  Google Scholar 

  23. K. Meijer, M. Denys, J. Lasar, J.P. Birat, G. Still, and B. Overmaat, ULCOS: Ultra-low CO2 steelmaking, Ironmaking Steel-making, 36(2009), No. 4, p. 251.

    Google Scholar 

  24. J.J. Yan, Progress and future of ultra-low CO2 steelmaking program, China Metall., 27(2017), No. 2, p. 6.

    Google Scholar 

  25. D.Y. Wang, Breaking-through iron-making technologies in ULCOS project, World Iron Steel, 2(2011), p. 7.

    Google Scholar 

  26. A. Ranzani da Costa, D. Wagner, and F. Patisson, Modelling a new, low CO2 emissions, hydrogen steelmaking process, J. Cleaner Prod., 46(2013), p. 27.

    Article  CAS  Google Scholar 

  27. T. Buergler and J. Prammer, Hydrogen steelmaking: Technology options and R&D projects, BHM Berg-Hüttenmänn. Monatsh., 164(2019), No. 11, p. 447.

    Article  CAS  Google Scholar 

  28. H. Mandova, P. Patrizio, S. Leduc, J. Kjärstadc, C. Wang, E. Wetterlund, F. Kraxner, and W. Gale, Achieving carbon-neutral iron and steelmaking in Europe through the deployment of bioenergy with carbon capture and storage, J. Cleaner Prod., 218(2019), p. 118.

    Article  Google Scholar 

  29. O. Posdziech, T. Geißler, K. Schwarze, and R. Blumentritt, System development and demonstration of large-scale high-temperature electrolysis, ECS Trans., 91(2019), No. 1, p. 2537.

    Article  Google Scholar 

  30. T. Ariyama, K. Takahashi, Y. Kawashiri, and T. Nouchi, Diversification of the ironmaking process toward the long-term global goal for carbon dioxide mitigation, J. Sustainable Metall., 5(2019), No. 3, p. 276.

    Article  Google Scholar 

  31. A. Fleischanderl, T. Plattner, P. Nair, and M. Schultz, Carbon recycling from metallurgical waste gases into bio-fuel and chemical, [in] The SCANMET V Proceeding, Luleå, 2016, p. 31.

  32. Paul Wurth, Paul Wurth to Design and Supply Coke Oven Gas Injection Systems for ROGESA Blast Furnaces [2020-05-22].

  33. Q. Wang, G.Q. Li, W. Zhang, and Y.X. Yang, An Investigation of carburization behavior of molten iron for the flash ironmaking process, Metall. Mater. Trans. B, 50(2019), No. 4, p. 2006.

    Article  CAS  Google Scholar 

  34. H.Y. Sohn, Suspension ironmaking technology with greatly reduced energy requirement and CO2 emissions, Steel Times Int., 31(2007), No. 4, p. 68.

    Google Scholar 

  35. H.Y. Sohn and Y. Mohassab, Development of a novel flash ironmaking technology with greatly reduced energy consumption and CO2 emissions, J. Sustainable Metall., 2(2016), No. 3, p. 216.

    Article  Google Scholar 

  36. HYBRIT Brochure [0200-55-22].

  37. V. Vogl, M. Åhman, and L.J. Nilsson, Assessment of hydrogen direct reduction for fossil-free steelmaking, J. Cleaner Prod., 203(2018), p. 736.

    Article  CAS  Google Scholar 

  38. P. Duarte, Trends in H2-based steelmaking, Steel Times Int., 43(2019), No. 1, p. 27.

    Google Scholar 

  39. D. Kushnir, T. Hansen, V. Vogl, and M. Åhmanc, Adopting hydrogen direct reduction for the Swedish steel industry: A technological innovation system (TIS) study, J. Cleaner Prod., 242(2019), art. No. 118185.

  40. Midrex, 2018 World Direct Reduction Statistics [2020-05-22].

  41. Z.W. Ying, M.S. Chu, J. Tang, Z.G. Liu, and Y.S. Zhou, Current situation and future adaptability analysis of non-blast furnace ironmaing process, Heibei Metall., 282(2019), No. 6, p. 1.

    Google Scholar 

  42. P. Cavaliere, Clean Ironmaking and Steelmaking Process, Springer, Switzerland, 2019.

    Book  Google Scholar 

  43. ArcelorMittal Commissions Midrex to Design Demonstration Plant for Hydrogen Steel Production in Hamburg [2020-05-22].

  44. W. Zhang, Z.Y. Wang, X.L. Wang, and L.G. Zhang, Experimental study of pulverized coal added dust injection into blast furnace, [in] The 9th CSM Steel Congress Proceeding, Beijing, 2009.

  45. Z.D. Tang, W.B. Li, Y.J. Li, and Y.X. Han, Experimental study on producing super iron concentrate from an ordinary iron concentrate in Shandong province, Conserv. Utilization Miner. Res., (2017), No. 2, p. 56.

  46. Z.C. Wang, Fundamental Research on the Process of Coal Gasification-Gas-Based Shaft Direct Reduction [Dissertation], Northeastern University, Shenyang, 2013.

    Google Scholar 

  47. A.M. Abdalla, S. Hossainac, O.B. Nisfindy, A.T. Azad, M. Dawood, and A.K. Azad, Hydrogen production, storage, transportation and key challenges with applications: A review, Energy Convers. Manage., 165(2018), p. 602.

    Article  CAS  Google Scholar 

  48. J. Chi and H.G. Yu, Water electrolysis based on renewable energy for hydrogen production, Chin. J. Catal., 39(2018), No. 3, p. 390.

    Article  CAS  Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (No. 51904063), the Fundamental Research Funds for the Central Universities (Nos. N2025023, N172503016, N172502005, and N172506011), the China Postdoctoral Science Foundation (No. 2018M640259), and the Xingliao Talent Plan (No. XLYC1902118).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Jue Tang or Man-sheng Chu.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Chu, Ms., Li, F. et al. Development and progress on hydrogen metallurgy. Int J Miner Metall Mater 27, 713–723 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: