Skip to main content

Advertisement

Log in

Synthesis and characterization of salt-impregnated anodic aluminum oxide composites for low-grade heat storage

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Thermochemical heat storage (THS) systems have recently attracted a lot of attention in research and development. In this study, an anodic aluminum oxide (AAO) template, fabricated by a two-step anodization method, was used for the first time as the matrix material for a THS system. Different salts were studied as thermochemical materials for their suitability in low-grade heat storage application driven by solar energy for an open system. Compositions were prepared by absorbing CaCl2, MgCl2, LiCl, LiNO3 and mixtures of these salts under a vacuum in an AAO matrix. Field Emission Scanning Electron Microscopy was used to examine the morphology of the produced AAO composites. Thermal energy storage capacities of the composites were characterized using a differential scanning calorimeter. Characterization analysis showed that anodized Al plates were suitable matrix materials for THS systems, and composite sorbent prepared with a 1:1 ratio LiCl/LiNO3 salt mixture had the highest energy value among all composites, with an energy density of 468.1 kJ·kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.Z. Liu, K. Nagano, D. Sugiyama, J. Togawa, and M. Nakamura, Honeycomb filters made from mesoporous composite material for an open sorption thermal energy storage system to store low-temperature industrial waste heat, Int. J. Heat Mass Transfer, 65(2013), p. 471.

    Article  CAS  Google Scholar 

  2. H. Lui, Study on Open and Closed Chemical Thermal Energy Storage Technology with Low-Regeneration Temperature [Dissertation], Hokkaido University, Sapporo, 2014, p. 2.

    Google Scholar 

  3. P. Tatsidjodoung, N. Le Pierrès, and L.G. Luo, A review of potential materials for thermal energy storage in building applications, Renewable Sustainable Energy Rev., 18(2013), p. 327.

    Article  Google Scholar 

  4. A. Sharma, V.V. Tyagi, C.R. Chen, and D. Buddhi, Review on thermal energy storage with phase change materials and applications, Renewable Sustainable Energy Rev., 13(2009), No. 2, p. 318.

    Article  CAS  Google Scholar 

  5. S.P. Casey, J. Elvins, S. Riffat, and A. Robinson, Salt impregnated deccicant matrices for ‘open’ thermochemical energy storage-Selection, synthesis and characterization of candidate materials, Energy Build., 84(2014), p. 412.

    Article  Google Scholar 

  6. H. Caliskan, I. Dincer, and A. Hepbasli, Thermodynamic analyses, and assessments of various thermal energy storage systems for buildings, Energy Convers. Manage., 62(2012), p. 109.

    Article  Google Scholar 

  7. D. Zhou, C.Y. Zhao, and Y. Tian, Review on thermal energy storage with phase change materials (PCMs) in building applications, Appl. Energy, 92(2012), p. 593.

    Article  CAS  Google Scholar 

  8. D.J. Close and R.V. Dunkle, Use of adsorbent beds for energy storage in drying of heating systems, Sol. Energy, 19(1977), No. 3, p. 233.

    Article  Google Scholar 

  9. L.F. Cabeza, I. Martorell, L. Miró, A.I. Fernández, and C. Barreneche, Advances in Thermal Energy Storage Systems: Methods and Applications, Edited by Luisa F. Cabeza, Woodhead Publishing, 2014, p. 1.

  10. S. Vasta, V. Brancato, D. La Rosa, V. Palomba, G. Restuccia, A. Sapienza, and A. Frazzica, Adsorption heat storage: state-of-the-art and future perspectives, Nanomaterials, 8(2018), No. 7, p. 522.

    Article  Google Scholar 

  11. Y.N. Zhang, R.Z. Wang, Y.J. Zhao, T.X. Li, S.B. Riffat, and N.M. Wajid, Development and thermochemical characterizations of vermiculite/SrBr2 composite sorbents for lowtemperature heat storage, Energy, 115(2016), p. 120.

    Article  Google Scholar 

  12. K. Posern and C. Kaps, Calorimetric studies of thermochemical heat storage materials based on mixtures of MgSO4 and MgCl2, Thermochim. Acta, 502(2010), No. 1–2, p. 73.

    Article  CAS  Google Scholar 

  13. N.H.S. Tay, M. Liu, M. Belusko, and F. Bruno, Review on transportable phase change material in thermal energy storage systems, Renewable Sustainable Energy Rev., 75(2017), p. 264.

    Article  CAS  Google Scholar 

  14. R. Parameshwaran, S. Kalaiselvam, S. Harikrishnan, and A. Elayaperuma, Sustainable thermal energy storage technologies for buildings: A review, Renewable Sustainable Energy Rev., 16(2012), No. 5, p. 2394.

    Article  CAS  Google Scholar 

  15. D. Aydin, S.P. Casey, and S. Riffat, The latest advancements on thermochemical heat storage systems, Renewable Sustainable Energy Rev., 41(2015), p. 356.

    Article  CAS  Google Scholar 

  16. J. Jänchen, D. Ackermann, E. Weiler, H. Stach, and W. Brösicke, Calorimetric investigation on zeolites. AlPO4’s and CaCl2 impregnated attapulgite for thermochemical storage of heat, Thermochim. Acta, 434(2005), No. 1–2, p. 37.

    Article  Google Scholar 

  17. A. Chel and G. Kaushik, Renewable energy technologies for sustainable development of energy efficient building, Alexandria Eng. J., 57(2018), No. 2, p. 655.

    Article  Google Scholar 

  18. H.Z. Liu, K. Nagano, A. Morita, J. Togawa, and M. Nakamura, Experimental testing of a small sorption air cooler using composite material made from natural siliceous shale and chloride, Appl. Therm. Eng., 82(2015), p. 68.

    Article  CAS  Google Scholar 

  19. Y.N. Zhang, R.Z. Wang, T.X. Li, and Y.J. Zhao, Thermochemical characterizations of novel vermiculite-LiCl composite sorbents for low-temperature heat storage, Energies, 9(2016), No. 10, p. 854.

    Article  Google Scholar 

  20. M. Tokarev, L. Gordeeva, V. Romannikov, I. Glaznev, and Y. Aristov, New composite sorbent CaCl2 in mesopores for sorption cooling/heating, Int. J. Therm. Sci., 41(2002), No. 5, p. 470.

    Article  CAS  Google Scholar 

  21. H.J. Wu, S.W. Wang, and D.S. Zhu, Effects of impregnating variables on dynamic sorption characteristics and storage properties of composite sorbent for solar heat storage, Sol. Energy, 81(2007), No. 7, p. 864.

    Article  CAS  Google Scholar 

  22. H.Z. Liu, K. Nagano, and J. Togawa, A composite material made of mesoporous siliceous shale impregnated with lithium chloride for an open sorption thermal energy storage system, Sol. Energy, 111(2015), p. 186.

    Article  CAS  Google Scholar 

  23. S. Hongois, F. Kuznik, P. Stevens, and J.J. Roux, Development and characterization of a new MgSO4−zeolite composite for long-term thermal energy storage, Sol. Energy Mater. Sol. Cells, 95(2011), No. 7, p. 1831.

    Article  CAS  Google Scholar 

  24. G. Whiting, D. Grondin, S. Bennici, and A. Auroux, Heats of water sorption studies on zeolite–MgSO4 composites as potential thermochemical heat storage materials, Sol. Energy Mater. Sol. Cells, 112(2013), p. 112.

    Article  CAS  Google Scholar 

  25. G. Whiting, D. Grondin, D. Stosic, S. Bennici, and A. Auroux, Zeolite–MgCl2 composites as potential long-term heat storage materials: Influence of zeolite properties on heats of water sorption, Sol. Energy Mater. Sol. Cells, 128(2014), p. 289.

    Article  CAS  Google Scholar 

  26. C. Barreneche, A.I. Fernández, L.F. Cabeza, and R. Cuypers, Thermophysical characterization and thermal cycling stability of two TCM: CaCl2 and zeolite, Appl. Energy, 137(2015), p. 726.

    Article  CAS  Google Scholar 

  27. D.S. Zhu, H.J. Wu, and S.W. Wang, Experimental study on composite silica gel supported CaCl2 sorbent for low grade heat storage, Int. J. Therm. Sci., 45(2006), No. 8, p. 804.

    Article  CAS  Google Scholar 

  28. A. Jabbari-Hichri, S. Bennici, and A. Auroux, Enhancing the heat storage density of silica–alumina by addition of hygroscopic salts (CaCl2, Ba(OH)2, and LiNO3), Sol. Energy Mater. Sol. Cells, 140(2015), p. 351.

    Article  CAS  Google Scholar 

  29. H. Jarimi, D. Aydin, Y.N. Zhang, Y. Ding, O. Ramadan, X.J. Chen, A. Dodo, Z. Utlu, and S. Riffat, Materials characterization of innovative composite materials for solardriven thermochemical heat storage (THS) suitable for building application, Int. J. Low-Carbon Technol., 14(2019), No. 3, p. 313.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) (Project No. 315M524) and the Scientific Research Projects Coordination Unit of Istanbul University (Project No. 25427).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengisu Yilmaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, B., Yüksel, B., Orhan, G. et al. Synthesis and characterization of salt-impregnated anodic aluminum oxide composites for low-grade heat storage. Int J Miner Metall Mater 27, 112–118 (2020). https://doi.org/10.1007/s12613-019-1890-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1890-x

Keywords

Navigation