Skip to main content
Log in

Reliability evaluation of hardness test methods of hardfacing coatings with hypoeutectic and hypereutectic microstructures

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Hardfacing coatings involve hard carbide/boride phases dispersed in a relatively soft steel matrix. For the hardness measurements of hardfacing coatings, depending on the micro structure, both the hardness test method and the applied load affect the hardness results; therefore, they affect the wear performance predictions of the coating. For this reason, the proper hardness test method should be determined according to the microstructure of the coating, and the reliability of the obtained hardness data should be established. This study aimed to determine the most suitable hardness test method for hypoeutectic and hypereutectic microstructures of hardfacing coatings by analyzing the reliability of Rockwell-C and Vickers hardness test results. Reliability analyses showed that Rockwell-C is not a suitable hardness test method for hypereutectic hardfacing coatings. Based on the relationship between wear resistance and hardness, Vickers hardness method was found more suitable for the considered materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Srikarun and P. Muangjunburee, The effect of iron-based hardfacing with chromium powder addition onto low carbon steel, Mater. Today Proc., 5(2018), No. 3, p. 9272.

    Article  CAS  Google Scholar 

  2. H.Z. Oo and P. Muangjunburee, Wear behaviour of hardfacing on 3.5% chromium cast steel by submerged arc welding, Mater. Today Proc., 5(2018), No. 3, p. 9281.

    Article  CAS  Google Scholar 

  3. J.F. Gou, Y. Wang, J.P. Sun, and X.W. Li, Bending strength and wear behavior of Fe-Cr-C-B hardfacing alloys with and without rare earth oxide nanoparticles, Surf. Coat. Technol., 311(2017), p. 113.

    Article  CAS  Google Scholar 

  4. K. Yang, Y. Gao, K. Yang, Y.F. Bao, and Y.F. Jiang, Micro-structure and wear resistance of Fe-Cr13-C-Nb hardfacing alloy with Ti addition, Wear, 376-377(2017), p. 1091.

    Article  CAS  Google Scholar 

  5. K. Günther, J.P. Bergmann, and D. Suchodoll, Hot wire-assisted gas metal arc welding of hypereutectic FeCrC hardfacing alloys: Microstructure and wear properties, Surf. Coat. Technol., 334(2018), p. 420.

    Article  CAS  Google Scholar 

  6. M.F. Buchely, J.C. Gutierrez, L.M. León, and A. Toro, The effect of microstructure on abrasive wear of hardfacing alloys, Wear, 259(2005), No. 1-6, p. 52. Wear

    Article  CAS  Google Scholar 

  7. H. Sabet, S. Khierandish, S. Mirdamadi, and M. Goodarzi, The microstructure and abrasive wear resistance of Fe-Cr-C hardfacing alloys with the composition of hypoeutectic, eu-tectic, and hypereutectic at Cr/C=6, Tribol. Lett., 44(2011), p. 237.

    Article  CAS  Google Scholar 

  8. K. Gurumoorthy, M. Kamaraj, K.P. Rao, A.S. Rao, and S. Venugopal, Micro structural aspects of plasma transferred arc surfaced Ni-based hardfacing alloy, Mater. Sci. Eng. A, 456(2007), No. 1-2, p. 11.

    Article  CAS  Google Scholar 

  9. F. Sadeghi, H. Najafi, and A. Abbasi, The effect of Ta substitution for Nb on the microstructure and wear resistance of an Fe-Cr-C hardfacing alloy, Surf. Coat. Technol., 324(2017), p. 85.

    Article  CAS  Google Scholar 

  10. H. Wang and S.F. Yu, Influence of heat treatment on micro-structure and sliding wear resistance of high chromium cast iron electro slag hardfacing layer, Surf. Coat. Technol., 319(2017), p. 182.

    Article  CAS  Google Scholar 

  11. A. Gualco, H.G. Svoboda, and E.S. Surian, Study of abrasive wear resistance of Fe-based nanostructured hardfacing, Wear, 360–361(2016), p. 14.

    Article  CAS  Google Scholar 

  12. S. Da Sun, D. Fabijanic, A. Ghaderi, M. Leary, J. Toton, S.J. Sun, M. Brandt, and M. Easton, Microstructure and hardness characterisation of laser coatings produced with a mixture of AISI 420 stainless steel and Fe-C-Cr-Nb-B-Mo steel alloy powders, Surf. Coat. Technol, 296(2016), p. 76.

    Article  CAS  Google Scholar 

  13. V.G. Efremenko, Y.G. Chabak, A. Lekatou, A.E. Karantzalis, K. Shimizu, V.I. Fedun, A.Y. Azarkhov, and A.V. Efremenko, Pulsed plasma deposition of Fe-C-Cr-W coating on high-Cr-cast iron: Effect of layered morphology and heat treatment on the microstructure and hardness, Surf. Coat. Technol., 304(2016), p. 293.

    Article  CAS  Google Scholar 

  14. C. M. Chang, C. M. Lin, C.C. Hsieh, J.H. Chen, and W.T. Wu, Micro-structural characteristics of Fe-40wt%Cr-xC hardfacing alloys with [1.0–4.0wt%] carbon content, J. Alloys Compd., 487(2009), No. 1-2, p. 83.

    Article  CAS  Google Scholar 

  15. Y.F. Zhou, Y.L. Yang, Y.W. Jiang, J. Yang, X.J. Ren, and Q.X. Yang, Fe-24wt% Cr-4.1wt% C hardfacing alloy: Microstructure and carbide refinement mechanisms with ceria additive, Mater. Charact, 72(2012), p. 77.

    Article  CAS  Google Scholar 

  16. L. Condra, Reliability Improvement with Design of Experiment, CRC Press, USA, 2001, p. 11.

    Google Scholar 

  17. B. Hlaas and J. Hlaassen, System Reliability: Concepts and Applications, Edward Arnold, VSSD, California, 1989, p. 11.

    Google Scholar 

  18. Y.G. Zhao, X.Y. Zhang, and Z.H. Lu, A flexible distribution and its application in reliability engineering, Reliab. Eng. Syst. Sqf., 176(2018), p. 1.

    Article  Google Scholar 

  19. B. Gnedenko and L.A. Ushakov, Probabilistic Reliability Engineering, John Wiley & Sons, New York, 1995, p. 10.

    Book  Google Scholar 

  20. D.C. Montgomery and G.C. Runger, Applied Statistics and Probability for Engineers, John Wiley & Sons, New York, 2007, p. 109.

    Google Scholar 

  21. W.G. Ireson, C.F. Coombs, and R.Y. Moss, Handbook of Reliability Engineering and Management, McGraw-Hill Professional, 1996, p. 308.

    Google Scholar 

  22. A.L. Yurkov, N.V. Jhuravleva, and E.S. Lukin, Kinetic microhardness measurements of sialon-based ceramics, J. Mater. Sci., 29(1994), No. 24, p. 6551.

    Article  CAS  Google Scholar 

  23. J.M. Schneider, M. Bigerelle, and A. Iost, Statistical analysis of the Vickers hardness, Mater. Sci. Eng. A, 262(1999), No. 1-2, p. 256.

    Article  Google Scholar 

  24. C. Çivi, N. Tahrali, and E. Atik, Reliability of mechanical properties of induction sintered iron based powder metal parts, Mater. Des., 53(2014), p. 383.

    Article  CAS  Google Scholar 

  25. V. Homolová and L. Čiripová, Experimental investigation of isothermal section of the B-Cr-Fe phase diagram at 1353 K, Adv. Mater. Sci. Eng., (2017), art. No. 2703986.

    Google Scholar 

  26. Z.H. Wang, G.L. Wan, D.Y. He, J.M. Jiang, and L. Cui, Microstructures and wear resistance of Fe-Cr-B-C hardfacing alloys, J. Mater. Eng., 4(2014), No. 9, p. 57.

    Google Scholar 

  27. M. Eroglu, Boride coatings on steel using shielded metal arc welding electrode: Microstructure and hardness, Surf. Coat. Technol., 203(2009), No. 16, p. 2229.

    Article  CAS  Google Scholar 

  28. C.C. Zhao, Y.F. Zhou, X.L. Xing, S. Liu, X.J. Ren, and Q.X. Yang, Investigation on the relationship between NbC and wear-resistance of Fe matrix composite coatings with different C contents, Appl. Surf. Sci., 439(2018), p. 468.

    Article  CAS  Google Scholar 

  29. X.R. Hou, B. Zhao, J. Yang, X.L. Xing, Y.F. Zhou, Y.L. Yang, and Q.X. Yang, Fe-0.4wt%C-6.5wt%Cr hardfacing coating: Microstructures and wear resistance with La2O3 additive, Appl. Surf Sci., 317(2014), p. 312.

    Article  CAS  Google Scholar 

  30. C. Fan, M.C. Chen, C. M. Chang, W.T. Wu, Microstructure change caused by (Cr,Fe)23C6 carbides in high chromium Fe-Cr-C hardfacing alloys, Surf Coat. Technol., 201(2006), No. 3-4, p. 908.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilay Çömez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çömez, N., Çivi, C. & Durmuş, H. Reliability evaluation of hardness test methods of hardfacing coatings with hypoeutectic and hypereutectic microstructures. Int J Miner Metall Mater 26, 1585–1593 (2019). https://doi.org/10.1007/s12613-019-1866-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1866-x

Keywords

Navigation