Skip to main content
Log in

Review on nanocomposites fabricated by mechanical alloying

  • Review
  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Composites are composed of multiphase materials, where each phase has specific properties that differ from those of the other phases which can effect on the whole properties of composite. Nanocomposites are class of materials that contain at least one phase in the nanometric size range and can be produced by any suitable technique for preparing nanomaterials. Composites are an interesting class of materials that have recently been used in numerous applications, including structural, biomedical, electronics, and environmental applications. In composites, reinforcements might be fibers, particulates, or whiskers. Mechanical alloying (MA) is a promising technique for producing nanocomposite materials that are difficult or impossible to prepare via conventional techniques. In this review, we provide an overview of nanocomposites prepared by the MA process. The mechanism of milling and other milling parameters are overviewed, and insights into sintering categories and parameters are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Iftekhar, Standard Handbook of Biomedical Engineering and Design, Chapter 12: Biomedical Composites, McGraw-Hill Companies, New York, 2004, p. 109.

    Google Scholar 

  2. W.D. Callister and D.G. Rethwisch, Materials Science and Engineering: An Introduction, Wiley, New York, 2003, p. 197.

    Google Scholar 

  3. F.L. Matthews and R.D. Rawlings, Composite Materials: Engineering and Science, Woodhead Publishing, 1999, p. 72.

    Google Scholar 

  4. E.T. Thostenson, C. Li, and T.W. Chou, Nanocomposites in context, Compos. Sci. Technol., 65 (2005), No. 3–4, p. 491.

    Article  CAS  Google Scholar 

  5. K. Chrissafis, G. Antoniadis, K.M. Paraskevopoulos, A. Vassiliou, and D.N. Bikiaris, Comparative study of the effect of different nanoparticles on the mechanical properties and thermal degradation mechanism of in situ prepared poly(e-caprolactone) nanocomposites, Compos. Sci. Technol., 67(2007), No. 10, p. 2165.

    Article  CAS  Google Scholar 

  6. P.R. Supronowicz, P.M. Ajayan, K.R. Ullmann, B.P. Aru-lanandam, D.W. Metzger, and R. Bizios, Novel current-conducting composite substrates for exposing osteoclasts to alternating current stimulation, J. Biomed. Mater. Res., 59(2002), No. 3, p. 499.

    Article  CAS  Google Scholar 

  7. C. Stephan, T.P. Nguyen, M.L. De La Chapelle, S. Lefrant, C. Journet, and P. Bernier, Characterization of single walled carbon nanotubes-PMMA composites, Synth. Met., 108(2000), No. 2 p. 139.

    Article  CAS  Google Scholar 

  8. R.A. Youness, M.A. Taha, and M.A. Ibrahim, Effect of sintering temperatures on the in vitro bioactivity, molecular structure and mechanical properties of titanium/carbonated hydroxyapatite nanobiocomposites, J. Mol. Struct., 1150(2017), p. 188.

    Article  CAS  Google Scholar 

  9. K. Niespodziana, K. Jurczyk, J. Jakubowicz, and M. Jurczyk, Fabrication and properties of titanium-hydroxyapatite nanocomposites, Mater. Chem. Phys., 123(2010), No. 1, p. 160.

    Article  CAS  Google Scholar 

  10. J.G. Miranda-Hernández, S. Moreno-Guerrero, A.B. Soto-Guzmán, and E. Rocha-Rangel, Production and characterization of Al2O3-Cu composite materials, J. Ceram. Process. Res., 7(2006), No. 4, p. 311.

    Google Scholar 

  11. C. Suryanarayana and N. Al-Aqeeli, Mechanically alloyed nanocomposites, Prog. Mater. Sci., 58(2013), No. 4, p. 383.

    Article  CAS  Google Scholar 

  12. A.W. Weeber, H. Bakker, and F.R. de Boer, The preparation of amorphous Ni-Zr powder by grinding the crystalline alloy, EPL, 2(1986), No. 6, p. 445.

    Article  CAS  Google Scholar 

  13. G. Jangg, F. Kuttner, and G. Korb, Preparation and properties of dispersion hardened aluminum, Aluminum, 51(1975), p. 641.

    CAS  Google Scholar 

  14. E. Arzt and L. Schultz, New materials by mechanical alloying techniques, Mater. Manuf. Process., 6(1991), No.4, p. 733.

    Article  Google Scholar 

  15. C. Suryanarayana, Mechanical Alloying and Milling, New York, Marcel Dekker, 2004.

    Book  Google Scholar 

  16. C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci., 46 (2001), No.1–2, p. 1.

    Article  CAS  Google Scholar 

  17. M.J. Luton, C.S. Jayanth, M.M. Disko, S. Matras, and J. Vallone, Cryomilling of Nano-phase Dispersion Strengthened Aluminum, [in] L.E. McCandlsih, D.E. Polk, R.W. Siegel, and B.H. Kear, eds., Multicomponent Ultrafine Microstructures, Vol. 132, Pittsburgh (PA), Mater. Res Soc., 1988, p. 132.

    Google Scholar 

  18. G. Heinicke, Tribochemistry, Munchen, Hanser Publishers, 1984, p. 119.

    Google Scholar 

  19. R.A. Youness, M.A. Taha, H. Elhaes, and M. Ibrahim, Molecular modeling, FTIR spectral characterization and mechanical properties of carbonated-hydroxyapatite prepared by mechanochemical synthesis, Mater. Chem. Phys., 190(2017), p. 209.

    Article  CAS  Google Scholar 

  20. R.A. Youness, M.A. Taha, H. Elhaes, and M. Ibrahim, Preparation, fourier transform infrared characterization and mechanical properties of hydroxyapatite nanopowders, J. Comput. Theor. Nanosci., 14(2017), No. 5, p. 2409.

    Article  CAS  Google Scholar 

  21. J.S. Benjamin, Mechanical alloying, Sci. Am., 234(1976), No. 5, p. 40.

    Article  CAS  Google Scholar 

  22. J.S. Benjamin and T.E. Volin, The mechanism of mechanical alloying, Metall. Trans., 5(1974), No. 8, p. 1929.

    Article  CAS  Google Scholar 

  23. P.S. Gilman and J.S. Benjamin, Mechanical alloying, Annu. Rev. Mater. Sci., 13(1983), No. 1, p. 279.

    Article  CAS  Google Scholar 

  24. M.F. Zawrah and L. Shaw, Microstructure and hardness of nanostructured Al-Fe-Cr-Ti alloys through mechanical alloying, Mater. Sci. Eng. A, 355(2003), No. 1–2, p. 37.

    Article  CAS  Google Scholar 

  25. L. Shaw, J. Villegas, H. Luo, M.F. Zawrah, and D. Miracle, Effect of process controlling agents on mechanical alloying of nanostructured aluminum alloys, Metall. Mater. Trans. A, 34(2003), No.1, p. 159.

    Article  Google Scholar 

  26. J.S. Benjamin and T.E. Volin, The mechanism of mechanical alloying, Metall. Trans., 5(1974), No. 8, p. 1929.

    Article  CAS  Google Scholar 

  27. M.F. Zawrah, H. Abdel-kader, and N.E. Elbaly, Fabrication of Al2O3-20 vol.% Al nanocomposite powders using high energy milling and their sinterability, Mater. Res. Bull., 47(2012), No. 3, p. 655.

    Article  CAS  Google Scholar 

  28. J.B. Fogagnolo, F. Velasco, M.H. Robert, and J.M. Torralba, Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders, Mater. Sci. Eng. A, 342(2003), No. 1–2, p. 131.

    Article  Google Scholar 

  29. R.R. Enrique, A.R.Z. José, E.V. Sergio, C.S. Brianda, E.G. Ivanovich, and M.S. Roberto, Effect of particle size and titanium content on the fracture toughness of particle-ceramic composites, Mater. Today: Proceedings, 3(2016), No. 2, p. 249.

    Google Scholar 

  30. M.F. Zawrah, A.A. El Kheshen, and A.A. El-Magraby, Effect of SiC-graphite-Al-metal addition on low- and ultra-low cement bauxite castables, Ceram. Int., 38(2012), No. 5, p. 3857.

    Article  CAS  Google Scholar 

  31. S. Sampath, H. Herman, N. Shimoda, and T. Saito, Thermal spray processing of FGMs, MRS Bull., 20(1995), No. 1, p. 27.

    Article  CAS  Google Scholar 

  32. R.M. Davis, B. McDermott, and C.C. Koch, Mechanical alloying of brittle materials, Metall. Trans. A, 19(1988), No. 12, p. 2867.

    Article  Google Scholar 

  33. S. Shrivastava, N. Jadon, and R. Jain, Next-generation polymer nanocomposite-based electrochemical sensors and biosensors: A review, Trends Anal. Chem., 82(2016), p. 55.

    Article  CAS  Google Scholar 

  34. I. Armentano, M. Dottori, E. Fortunati, S. Mattioli, and J.M. Kenny, Biodegradable polymer matrix nanocomposites for tissue engineering: a review, Polym. Degrad. Stab., 95(2010), No. 11, p. 2126.

    Article  CAS  Google Scholar 

  35. K. Rezwan, Q.Z. Chen, J.J. Blaker, and A.R. Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials, 27(2006), No. 18, p. 3413.

    Article  CAS  Google Scholar 

  36. L.S. Nair and C.T. Laurencin, Biodegradable polymers as biomaterials, Prog. Polym. Sci., 32(2007), No. 8–9, p. 762.

    Article  CAS  Google Scholar 

  37. M. Dziadek, E. Stodolak-Zych, and K. Cholewa-Kowalska, Biodegradable ceramic-polymer composites for biomedical applications: A review, Mater. Sci. Eng. C, 71(2017), p. 1175.

    Article  CAS  Google Scholar 

  38. M.A. Taha and M.F. Zawrah, Effect of nano ZrO2 on strengthening and electrical properties of Cu-Matrix nano-composits prepared by mechanical alloying, Ceram. Int., 43(2017), No. 15, p. 12698.

    Article  CAS  Google Scholar 

  39. M.A. Taha and M.F. Zawrah, Mechanical alloying and sintering of Ni/10wt% Al2O3 nanocomposites and its characterization, Silicon, 10(2018), No. 4, p. 1351.

    Article  CAS  Google Scholar 

  40. M.F. Zawrah, M.A. Taha, F. Saadallah, A.G. Mostafa, M.Y. Hassan, and M. Nasr, Effect of nano ZrO2 on the properties of Al-Al2O3 nanocomposites prepared by mechanical alloying, Silicon, 10(2018), No. 4, p. 1523.

    Article  CAS  Google Scholar 

  41. M.F. Zawrah, M.A. Taha, and H.A. Mostafa, In-situ formation of Al2O3/Al core-shell from waste material: production of porous composite improved by graphene, Ceram. Int., 44(2018), No. 9, p. 10693.

    Article  CAS  Google Scholar 

  42. E.M. Hamzawy, A.A. El-Kheshen, and M.F. Zawrah, Densification and properties of glass/cordierite composites, Ce-ram. Int., 31(2005), No. 3, p. 383.

    Article  CAS  Google Scholar 

  43. M.F. Zawrah and E.M.A. Hamzawy, Effect of cristobalite formation on sinterability, microstructure and properties of glass-alumina composites, Ceram. Int., 28(2002), No. 2, p. 123.

    Article  CAS  Google Scholar 

  44. A.A. El-Kheshen and M.F. Zawrah, Sinterability, microstructure and properties of glass/ceramics composites, Ceram. Int., 29(2003), No. 3, p. 251.

    Article  CAS  Google Scholar 

  45. M.M.S. Wahsh, R.M. Khattab, and M.F. Zawrah, Sintering and technological properties of alumina/zirconia/nano TiO2 ceramic composites, Mater. Res. Bull., 48(2013), No. 4, p. 1411.

    Article  CAS  Google Scholar 

  46. M.F. Zawrah, R.M. Khattab, E.M Saad, and R.A. Gado, Effect of surfactant types and their concentration on the structural characteristics of nanoclay, Spectrochim. Acta Part A, 122(2014), p. 616.

    Article  CAS  Google Scholar 

  47. R.M. Khattab, H.A. Dadr, and M.F. Zawrah, Effect of processing techniques on properties of porous TiO2 and TiO2/hydroxyapatite composites, Ceram. Int., 44(2018) No. 7, p. 8643.

    Article  CAS  Google Scholar 

  48. R.M. Khattab, A.M. El-Rafei, and M.F. Zawrah, In-situ formation of sintered cordierite-mullite nano-micro composites by utilizing of waste silica fume, Mater. Res. Bull., 47(2012), No. 9, p. 2662.

    Article  CAS  Google Scholar 

  49. M.F. Zawrah, Effect of Cr2O3 on the properties of spinel/mullite composites, Brit. Ceram. Trans., 102(2003), No. 3, p. 114.

    Article  CAS  Google Scholar 

  50. M.F. Zawrah and N.M. Khalil, Processing, sintering and properties of CaZrO3/MgO and ZrO2/MgO composites, InterCeram, 57(2008), No. 2, p. S/1.

  51. M. Awaad, M.F. Zawrah, and N.M. Khalil, In situ formation of zirconia-alumina-spinel-mullite ceramic composites, Ceram. Int., 34(2008), No. 2, p. 429.

    Article  CAS  Google Scholar 

  52. A.A. El-kheshen, M.F. Zawrah, and M. Awaad, Densification, phase composition and properties of borosilicate glass composites containing nano-alumina and titania, J. Mater. Sci.: Mater. Electron., 20(2009), No. 7, p. 637.

    CAS  Google Scholar 

  53. A. Ficai, E. Andronescu, G. Voicu, C. Ghitulica, B.S. Vasile, D. Ficai, and V. Trandafir, Self assembled collagen/hydroxyapatite composite materials, Chem. Eng. J., 160(2010), No. 2, p. 794.

    Article  CAS  Google Scholar 

  54. L. Zhang, P. Tang, M. Xu, W. Zhang, W. Chai, and Y. Wang, Effects of crystalline phase on the biological properties of collagen-hydroxyapatite composites, Acta Biomater., 6(2010), No. 6, p. 2189.

    Article  CAS  Google Scholar 

  55. J. Yin and B.L. Deng, Polymer-matrix nanocomposite membranes for water treatment, J. Membr. Sci., 479(2015), p. 256.

    Article  CAS  Google Scholar 

  56. X.C. Wang, J. Chang, and C.T. Wu, Bioactive inorganic/organic nanocomposites for wound healing, Appl. Mater. Today, 11(2018), p. 308.

    Article  Google Scholar 

  57. A. Smirnov and J.F. Bartolomé, Microstructure and mechanical properties of ZrO2 ceramics toughened by 5-20vol% Ta metallic particles fabricated by pressureless sintering, Ceram. Int., 40(2014), No. 1, p. 1829.

    Article  CAS  Google Scholar 

  58. A. Zima, Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength, Spectrochim. Acta, 193(2018), p. 175.

    Article  CAS  Google Scholar 

  59. A.G. Basutkar and A. Kolekar, A review on properties and applications of ceramic matrix composites, IJRSI, II(2015), No. XII p. 28.

    Google Scholar 

  60. J. Silvestre, N. Silvestre, and J. de Brito, An overview on the improvement of mechanical properties of ceramics nanocomposites, J. Nanomater., 2015(2015), p. 3.

    Article  CAS  Google Scholar 

  61. C. Pecharromán, J.I. Beltrán, F. Esteban-Betegón, S. López-Esteban, J.F. Bartolomé, M.C. Muňoz, and J.S. Moya, Zirconia/nickel interfaces in micro- and nanocomposites, Z. Metallkd., 96(2005), No. 5, p. 507.

    Article  Google Scholar 

  62. J.S. Moya, S. López-Esteban, C. Pecharromán, J.F. Bartolomé, and R. Torrecillas, Mechanically stable monoclinic zirconia-nickel composite, J. Am. Ceram. Soc., 85(2002), No. 8, p. 2119.

    Article  CAS  Google Scholar 

  63. Y.G. Jung, S. Choi, C.S. Oh, and U.G. Paik, Residual stress and thermal properties of zirconia/metal (nickel and stainless steel 304) functionally graded materials fabricated by hot pressing, J. Mater. Sci., 32(1997), No.14, p. 3841.

    Article  CAS  Google Scholar 

  64. M.F. Zawrah, Synthesis and characterization of WC-Co nanocomposites by novel chemical method, Ceram. Int., 33(2007), No. 2, p. 155.

    Article  CAS  Google Scholar 

  65. M.F. Zawrah, M.A. Zayed, and M.R.K. Ali, Synthesis and characterization of SiC and SiC/Si3N4 composite nano powders from waste material, J. Hazard. Mater., 227–228(2012), p. 250.

    Article  CAS  Google Scholar 

  66. J. Suri, L.L. Shaw, and M.F. Zawrah, Tailoring the relative Si3N4 and SiC contents in Si3N4/SiC nanopowders through carbothermic reduction and nitridation of silica fume, Int. J. Appl. Ceram. Technol., 9(2011), No. 2, p. 291.

    Article  CAS  Google Scholar 

  67. J. Suri, L.L Shaw, and M.F. Zawrah, Synthesis of carbon-free Si3N4/SiC nanopowders using silica fume, Ceram. Int., 37(2011), No. 8, p. 3477.

    Article  CAS  Google Scholar 

  68. M.F. Zawrah, R.M. Khattab, A.A. El-Kheshen, and E. El Fadaly, Sintering and properties of borosilicate glass/Li-Na-K-feldspar composites for electronic applications, Ceram. Int., 43(2017), No. 17, p. 15068.

    Article  CAS  Google Scholar 

  69. M.F.M. Zawrah and A.A. El-Kheshen, Characterization of borosilicate glass matrix composites reinforced with SiC or ZrO2, Brit. Ceram. Trans., 103(2004), No. 4, p. 165.

    Article  CAS  Google Scholar 

  70. M.F. Zawrah and M.H. Aly, In-situ formation of Al2O3-SiC-mullite from Al matrix composites, Ceram. Int., 32(2006), No. 1, p. 21.

    Article  CAS  Google Scholar 

  71. Y. Yamada, A. Kawasaki, M. Taya, and R. Watanabe, Effect of debonding at the phase interface on Young's modulus in sintered PSZ/stainless steel composites, Mater. Trans., JIM, 35(1994), No. 11, p. 814.

    Article  CAS  Google Scholar 

  72. M. Nawa, K. Yamazaki, T. Sekino, and K. Niihara, Micro-structure and mechanical properties of 3Y-TZP/Mo nano-composites-processing a novel interpenetrated intragranular microstructure, J. Mater. Sci., 31(1996), No. 11, p. 2849.

    Article  CAS  Google Scholar 

  73. S. López-Esteban, J.F. Bartolomé, C. Pecharromán, and J.S. Moya, Zirconia/stainless-steel continuous functionally graded material, J. Eur. Ceram. Soc., 22(2002), No. 16, p. 2799.

    Article  Google Scholar 

  74. S. López-Esteban, J.F. Bartolomé, J.S. Moya, and T. Tanimoto, Mechanical performance of 3Y-TZP/Ni composites: tensile, bending, and uniaxial fatigue tests, J. Mater. Res., 17(2002), No. 7, p. 1592.

    Article  Google Scholar 

  75. M.A. Taha, G.M. Elkomy, H. Abo Mostafa, and E.S. Gouda, Effect of ZrO2 contents and ageing times on mechanical and electrical properties of Al-4.5 wt.% Cu nanocomposites prepared by mechanical alloying, Mater. Chem. Phys., 206(2018), p. 116.

    Article  CAS  Google Scholar 

  76. M.A. Taha, A.H. Nassar, and M.F. Zawrah, Improvement of wettability, sinterability, mechanical and electrical properties of Al2O3-Ni nanocomposites prepared by mechanical alloying, Ceram. Int., 43(2017), No. 4, p. 3576.

    Article  CAS  Google Scholar 

  77. M.F. Zawrah, R.A. Essawy, H.A. Zayed, A.H.A. Fattah, and M.A. Taha, Mechanical alloying, sintering and characterization of Al2O3-20wt%-Cu nanocomposite, Ceram. Int., 40(2014), No. 1, p. 31.

    Article  CAS  Google Scholar 

  78. K. Honjo, Fracture toughness of PAN-based carbon fibres estimated from strength-mirror size relation, Carbon, 41(2003), No. 5, p. 979.

    Article  CAS  Google Scholar 

  79. Y.C. Yang, C. Ramirez, X. Wang, Z.X. Guo, A. Tokranov, R.Q. Zhou, I. Szlufarska, J. Lou, and B.W. Sheldon, Impact on carbon nanotube defects on fracture mechanisms in ceramic nanocomposites, Carbon, 115(2017), p. 402.

    Article  CAS  Google Scholar 

  80. N Koichi, New design concept of structural ceramics/ceramic nanocomposites, J. Ceram. Soc. Jpn., 99(1991), p. 974.

    Article  Google Scholar 

  81. Y.K. Jeong and K. Niihara, Microstructure and properties of alumina-silicon carbide nanocomposites fabricated by pressureless sintering and post hot-isostatic pressing, Trans. Nonferrous Met. Soc., 21(2011), p. 1.

    Article  Google Scholar 

  82. M. Yoshimura, T. Ohji, M. Sando, Y.H. Choa, T. Sekino, and K. Niihara, Oxidation-induced strengthening and toughening behavior in micro-and nano-composites of Y2O3/SiC system, Mater. Lett., 35(1998), No. 3–4, p. 139.

    Article  CAS  Google Scholar 

  83. J.F. Yang, T. Ohii, T. Sekino, C.L. Li, and K. Niihara, Phase transformation, microstructure and mechanical properties of Si3N4/SiC composite, J. Eur. Ceram. Soc., 21(2001), No. 12, p. 2179.

    Article  CAS  Google Scholar 

  84. P. Palmero, Structural ceramic nanocomposites: A review of properties and powders' synthesis methods, Nanomaterials, 5(2015), No. 2, p. 656.

    Article  CAS  Google Scholar 

  85. J. Venkatesan and S.K. Kim, Nano-hydroxyapatite composite biomaterials for bone tissue engineering— a review, J. Biomed. Nanotechnol., 10(2014), No. 10, p. 3124.

    Article  CAS  Google Scholar 

  86. H.S. Mansur and H.S. Costa, Nanostructured poly(vinyl alcohol)/bioactive glass and poly(vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications, Chem. Eng. J., 137(2008), No. 1, p. 72.

    Article  CAS  Google Scholar 

  87. J.L. Liu and X.G. Miao, Sol-gel derived bioglass as a coating material for porous alumina scaffolds, Ceram. Int., 30(2004), No. 7, p. 1781.

    Article  CAS  Google Scholar 

  88. M. Haghshenas, Mechanical characteristics of biodegradable magnesium matrix composites: A review, J. Magnesium Alloys, 5(2017), No. 2, p. 189.

    Article  CAS  Google Scholar 

  89. M. Prakasam, J. Locs, K. Salma-Ancane, D. Loca, A. Largeteau, and L. Berzina-Cimdina, Biodegradable materials and metallic implants-a review, J. Funct. Biomater., 8(2017), No. 4, p. 44.

    Article  CAS  Google Scholar 

  90. Y.F. Zheng, X.N. Gu, and F. Witte, Biodegradable metals, Mater. Sci. Eng. R, 77(2014), p. 1.

    Article  Google Scholar 

  91. A. Chandrasekar, S. Sagadevan, and A. Dakshnamoorthy, Synthesis and characterization of nano-hydroxyapatite (n-HAP) using the wet chemical technique, Int. J. Phys. Sci., 8(2013), No. 32, p. 1639.

    Google Scholar 

  92. E.M.A. Khalil, R.A. Youness, M.S. Amer, and M.A. Taha, Mechanical properties, in vitro and in vivo bioactivity assessment of Na2O-CaO-P2O5-B2O3-SiO2 glass-ceramics, Ceram. Int., 44(2018), No. 7, p. 7867.

    Article  CAS  Google Scholar 

  93. R.A. Youness, M.A. Taha, M. Ibrahim, and A. El-Kheshen, FTIR spectral characterization, mechanical properties and antimicrobial properties of La-doped phosphate-based bioactive glasses, Silicon, 10(2018), No. 3, p. 1151.

    Article  CAS  Google Scholar 

  94. R.A. Youness, M.A. Taha, A.A. El-Kheshen, and M. Ibrahim, Influence of the addition of carbonated hydroxyapatite and selenium dioxide on mechanical properties and in vitro bioactivity of borosilicate inert glass, Ceram. Int., 44(2018), No. 7, p. 20677.

    Article  CAS  Google Scholar 

  95. S.M. Abo-Naf, E.S.M. Khalil, E.S.M. El-Sayed, H. Zayed, and R.A. Youness, In vitro bioactivity evaluation, mechanical properties and microstructural characterization of Na2O-CaO-B2O3-P2O5 glasses, Spectrochim. Acta A, 144(2015), p. 88.

    Article  CAS  Google Scholar 

  96. R.A. Youness, M.A. Taha, and M. Ibrahim, In vitro bioactivity, physical and mechanical properties of carbonated-fluoroapatite during mechanochemical synthesis, Ceram. Int., 44(2018), No. 17, p. 21323.

    Article  CAS  Google Scholar 

  97. P.N. Jagadale, S.R. Kulal, M.G. Joshi, P.P. Jagtap, S.M. Khetre, and S.R. Bamane, Synthesis and characterization of nanostructured CaSiO3 biomaterial, Mater. Sci.-Poland, 31(2013), No. 2, p. 269.

    Article  CAS  Google Scholar 

  98. H. Oonishi, L.L. Hench, J. Wilson, F. Suqihara, E. Tsuji, M. Matsuura, S. Kin, T. Yamamoto, and S. Mizokawa, Quantitative comparison of bone growth of bone growth behavior in granules of bioglass, A-W glass-ceramics, and hydroxyapatite, J. Biomed. Mater. Res., 51(2000), No. 1, p. 37.

    Article  CAS  Google Scholar 

  99. A. Refaat, R.A. Youness, M.A. Taha, and M. Ibrahim, Effect of zinc oxide on the electronic properties of carbonated hydroxyapatite, J. Mol. Struct., 1147(2017), p. 148.

    Article  CAS  Google Scholar 

  100. V.P. Orlovskii, V.S. Komlev, and S.M. Barinov, Hydroxyapatite and hydroxyapatite-based ceramics, Inorg. Mater., 38(2002), No. 10, p. 973.

    Article  CAS  Google Scholar 

  101. R. Langer and J.P. Vacanti, Tissue engineering, Science, 260(1993), No. 5110, p. 920.

    Article  CAS  Google Scholar 

  102. E.M. Christenson, K.S. Anseth, J.J.P. van den Beucken Jeroen, C.K. Chan, B. Ercan, and J.A. Jansen, Nanobiomaterial applications in orthopaedics, J. Orthop. Res., 25(2007), No. 1, p. 11.

    Article  CAS  Google Scholar 

  103. S.V. Dorozhkin, Biocomposites and hybrid biomaterials based on calcium orthophosphates, Biomatter, 1(2011), No. 1, p. 3.

    Article  Google Scholar 

  104. V.S. Komlev, S.M. Barinov, V.P. Orlovskii, and S.G. Kurdyumov, Porous ceramic granules of hydroxyapatite, Refract. Ind. Ceram., 42(2001), No. 5–6, p. 195.

    Article  CAS  Google Scholar 

  105. J.O. Akindoyo, M.D.H. Beg, S. Ghazali, and H.P. Heim, Impact modified PLA-hydroxyapatite compo-sites-thermo-mechanical properties, Composites Part A, 107(2018), p. 326.

    Article  CAS  Google Scholar 

  106. M. Gong, Q. Zhao, L.M. Dai, Y.Y. Li, and T.S. Jiang, Fabrication of polylactic acid/hydroxyapatite/graphene oxide composite and their thermal stability, hydrophobic and mechanical properties, J. Asian Ceram. Soc., 5(2017), No. 2, p. 160.

    Article  Google Scholar 

  107. K. Maca, M. Trunec, and R. Chmelik, Processing and properties of fine-grained transparent MgAl2O4 ceramics, Ceram. Silik., 51(2017), No. 2, p. 94.

    Google Scholar 

  108. A. Vladescu, S.C. Padmanabhan, F. Ak Azem, M. Braic, I. Titorencu, I. Birlik, M.A. Morris, and V. Braic, Mechanical properties and biocompatibility of the sputtered Ti doped hydroxyapatite, J. Mech. Behav. Biomed. Mater., 63(2016), p. 314.

    Article  CAS  Google Scholar 

  109. F. Heidari, M. Razavi, M.E. Bahrololoom, R. Bazargan-Lari, D. Vashaee, H. Kotturi, and L. Tayebi, Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications, Mater. Sci. Eng. C, 65(2016), p. 338.

    Article  CAS  Google Scholar 

  110. A. Vladescu, I. Birlik, V. Baric, M. Toparli, E. Celik, and F. Ak Azem, Enhancement of the mechanical properties of hydroxyapatite by SiC addition, J. Mech. Behav. Biomed. Mater., 40(2014), p. 362.

    Article  CAS  Google Scholar 

  111. R.K. Roeder, G.L. Converse, R.J. Kane, and W. Yue, Hydroxyapatite-reinforced polymer biocomposites for synthetic bone substitutes, JOM, 60(2008), No. 3, p. 38.

    Article  CAS  Google Scholar 

  112. G.S. Upadhyaya, Powder Metallurgy Technology, Cambridge International Science Publishing, UK, 2002.

    Google Scholar 

  113. M.J. Donachie and M.F. Burr, Effects of pressing on metal powders, JOM, 15(1963), No. 11, p. 849.

    Article  CAS  Google Scholar 

  114. S.Y. Gómes and D. Hotza, Predicting powder densification during sintering, J. Eur. Ceram. Soc., 38(2018), No. 4, p. 1736.

    Article  CAS  Google Scholar 

  115. T. Spusta, J. Svoboda, and K. Maca, Study of pore closure during pressure-less sintering of advanced oxide ceramics, Acta Mater., 115(2016), p. 347.

    Article  CAS  Google Scholar 

  116. G.L. Messing and A.J. Stevenson, Materials science: toward pore-free ceramics, Science, 322(2008), p. 383.

    Article  CAS  Google Scholar 

  117. C.T. Campbell, S.C. Parker, and D.E. Starr, The effect of size-dependent nanoparticle energetics on catalyst sintering, Science, 298(2002), No. 5594, p. 811.

    Article  CAS  Google Scholar 

  118. C. Herring, Effect of change of scale on sintering phenomena, J. Appl. Phys., 21(1950), No. 4, p. 301.

    Article  CAS  Google Scholar 

  119. J. Pan, Modeling sintering at different length scales, Int. Mater. Rev., 48(2003), No. 2, p. 69.

    Article  CAS  Google Scholar 

  120. T.S. Yeh and M.D. Scaks, Low-temperature sintering of aluminum oxide, J. Am. Ceram. Soc., 71(1988), No. 10, p. 841.

    Article  CAS  Google Scholar 

  121. E.A. Barringer and H.K. Bowman, Formation, packing, and sintering of mono-dispersed TiO2 powders, J. Am. Ceram. Soc., 65(1982), No. 12, p. 199.

    Article  Google Scholar 

  122. X. Kuang, G. Carotenuto, and L. Nicolais, A review of ceramic sintering and suggestions on reducing sintering temperatures, Adv. Perform. Mater., 4(1997), No. 3, p, 257.

  123. Z. He and J. Ma, Grain growth rate constant of hot-pressed alumina ceramics, Mater. Lett., 44(2000), No. 1, p. 14.

    Article  CAS  Google Scholar 

  124. S.C. Liao, Y.J. Chen, B.H. Kear, and W.E. Mayo, High pressure/low temperature sintering of nanocrystalline alumina, Nanostruct. Mater., 10(1998), No. 6, p. 1063.

    Article  CAS  Google Scholar 

  125. L. Gao, J.S. Hong, H. Miyamoto, and S.D.D.L. Torre, Bending strength and micro-structure of Al2O3 ceramics densified by spark plasma sintering, J. Eur. Ceram. Soc., 20(2000), No. 12, p. 2149.

    Article  CAS  Google Scholar 

  126. Y. Zhou, K. Hirao, Y. Yamauchi, and S. Kanzaki, Densification and grain growth in pulse electric current sintering of alumina, J. Eur. Ceram. Soc., 24(2004), No. 12, p. 345.

    Article  CAS  Google Scholar 

  127. N.J. Lóh, L. Simăo, C.A. Faller, A. de Noni Jr, and O.R.K. Montedo, A review of two-step sintering for ceramics, Ceram. Int., 42(2016), No. 11, p. 12556.

    Article  CAS  Google Scholar 

  128. T. Spusta, J. Svoboda, and K. Maca, Study of pore closure during pressure-less sintering of advanced oxide ceramics, Acta Mater., 115(2016), p. 347.

    Article  CAS  Google Scholar 

  129. A. Krell, J. Klimke and T. Hutzler, Advanced spinel and sub-μm Al2O3 for transparent armor applications, J. Eur. Ceram. Soc., 29(2009), No. 2, p. 275.

    Article  CAS  Google Scholar 

  130. M.J. Mayo, Processing of nanocrystalline ceramics from ultrafine particles, Int. Mater. Rev., 41(1996), No. 3, p. 85.

    Article  CAS  Google Scholar 

  131. M. Prakasam, J. Locs, K. Salma-Ancane, D. Loca, A. Largeteau, and L. Berzina-Cimdina, Fabrication, properties and applications of dense hydroxyapatite: a review, J. Funct. Biomater., 6(2015), No. 4, p. 1099.

    Article  CAS  Google Scholar 

  132. S. Ji, Q. Gu, and B. Xia, Porosity dependence of mechanical properties of solid materials, J. Mater. Sci., 41(2006), No. 6, p. 1757.

    Article  CAS  Google Scholar 

  133. M.A. Taha, G.M. Elkomy, H.A. Mostafa, and E.S. Gouda, Effect of ZrO2 contents and ageing times on mechanical and electrical properties of Al-4.5wt% Cu nanocomposites prepared by mechanical alloying, Mater. Chem. Phys., 206(2018), p. 116.

    Article  CAS  Google Scholar 

  134. M.A. Taha, A.H. Nassar, and M.F. Zawrah, Effect of milling parameters on sinterability, mechanical properties of Cu-4wt% ZrO2 nanocomposite, Mater. Chem. Phys., 181(2016), p. 26.

    Article  CAS  Google Scholar 

  135. M.F. Zawrah, H.A. Zayed, R.A. Essawy, A.H. Nassar, and M.A. Taha, Preparation by mechanical alloying, characterization and sintering of Cu-20wt% Al2O3 nanocomposites, Mater. Des., 46(2013), p. 485.

    Article  CAS  Google Scholar 

  136. I.Y. Guzman, Reaction sintering and its practical application, Glass Ceram., 50(1993), No. 9–10, p, 412.

  137. M.A. Encinas-Romero, J. Peralta-Haley, and J.L. Valenzuela-García, Synthesis and structural characterization of hydroxyapatite-wollastonite biocomposites, produced by an alternative sol-gel route, J. Biomater. Nanobiotechnol., 4(2013), No. 4, p. 327.

    Article  CAS  Google Scholar 

  138. S. Lala, S. Brahmachari, P.K. Das, D. Das, T. Kar, and S.K. Pradhan, Biocompatible nanocrystalline natural bonelike carbonated hydroxyapatite synthesized by mechanical alloying in a record minimum time, Mater. Sci. Eng. C, 42(2014), p. 647.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.F. Zawrah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha, M.A., Youness, R.A. & Zawrah, M. Review on nanocomposites fabricated by mechanical alloying. Int J Miner Metall Mater 26, 1047–1058 (2019). https://doi.org/10.1007/s12613-019-1827-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1827-4

Keywords

Navigation