Skip to main content
Log in

Solid solution evolution during mechanical alloying in Cu-Nb-Al compounds

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

This work concerns the structural evolution of Cu70Nb20Al10 (at%) alloy processed by mechanical alloying using a planetary ball mill in air atmosphere for different times (4 to 200 h). The morphological, structural, micro structural, and thermal behaviors of the alloy were investigated by scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, and differential scanning calorimetry. X-ray diffraction patterns were examined using the Rietveld refinement technique with the help of the MAUD software. A disordered FCC-Cu(Nb,Al) solid solution was formed after 8 h of milling. The crystallite size, microstrain, and lattice parameter were determined by the Rietveld method. With increasing milling time, the crystallite size of the final product—ternary -phase FCC-Cu(Nb,Al)—is refined to the nanometer scale, reaching 12 nm after 200 h. This crystallographic structure combines good mechanical strength and good ductility. An increase in microstrain and partial oxidation were also observed with increasing milling time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.S. Benjamin, Dispersion strengthened superalloys by mechanical alloying, Metall. Trans., 1(1970), No. 10, p. 2943.

    Google Scholar 

  2. A.R. Yavari, P.J. Desre, and T. Banameur, Mechanically driven alloying of immiscible elements, Phys. Rev. Lett., 68(1992), No. 14, p. 2235.

    Article  Google Scholar 

  3. K. Uenishi, K.F. Kobayashi, S. Nasu, H. Hatano, K.N. Ishibara, and P.H. Shingu, Mechanical alloying in the Fe-Cu system, Z. Metallkd., 83(1992), No. 2, p. 132.

    Google Scholar 

  4. J. Kuyama, H. Inui, S. Imaoka, K.N. Ishihara, and P.H. Shinhu, Nanometer-sized crystals formed by the mechanical alloying in the Ag-Fe system, Jpn. J. Appl. Phys., 30(1991), No. 5A, p. L854.

    Article  Google Scholar 

  5. C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci., 46(2001), No. 1–2, p. 1.

    Article  Google Scholar 

  6. M.S. El-Eskandarany, Mechanical Alloying for Fabrication of Advanced Engineering Materials, Noyes Publications/William Andrew Publishing, Norwich, N.Y., 2001, p. 154.

    Google Scholar 

  7. M.S. Khoskhoo, S. Scudinio, J. Thomas, K.B. Sureddi, and J. Eckert, Grain and crystalline size evaluation of cryomilled pure copper, J. Alloys Compd., 509(2011), p. S343.

    Article  Google Scholar 

  8. H. Abdoli, H. Farnoush, E. Salahi, and K. Pourazrang, Study of the densification of a nanostructured composite powder Part 1: effect of compaction pressure and reinforcement addition, Mater. Sci. Eng A, 486(2008), No. 1–2, p. 580.

    Article  Google Scholar 

  9. J. Ghosh, S. Mazumdar, M. Das, S. Ghatak, and A.K. Basu, Microstructural characterization of amorphous and nanocrys-talline boron nitride prepared by high-energy ball milling, Mater. Res. Bull., 43(2008), No. 4, p. 1023.

    Article  Google Scholar 

  10. J. Torrens-Serra, I. Peral, J. Rodriguez-Viejo, and M.T. Clavaguera-Mora, Micro structure evolution and grain size distribution in nanocrystalline FeNbBCu from synchrotron XRD and TEM analysis, J. Non-Cryst. Solids, 358(2012), No. 1, p. 107.

    Article  Google Scholar 

  11. F. Hadef, A. Otomani, A. Djekoun, and J.M. Greneche, Structural and microstructural study of nanostructured Fe50Al40Ni10 powders produced by mechanical alloying, Mater. Charact., 62(2011), No. 8,p. 751.

    Article  Google Scholar 

  12. H. Dutta, A. Sen, J. Bhattacharjee, and S.K. Pradhan, Preparation of ternary Ti0.9Ni0.1C cermets by mechanical alloying: microstructure characterization by Rietveld method and electron microscopy, J. Alloys Compd., 493(2010), No. 1–2, p. 666.

    Article  Google Scholar 

  13. A. Inoue, Bulk amorphous alloys, [in] Amorphous and Nanocrystalline Materials, Springer, Berlin, 2001, p. 1.

    Chapter  Google Scholar 

  14. S.Z. Kou, L. Feng, Y.T. Ding, G.J. Xu, Z.F. Ding, and P.Q. La, Synthesis and magnetic properties of Cu-based amorphous alloys made by mechanical alloying, Intermetallics, 12(2004), No. 10–11, p. 1115.

    Article  Google Scholar 

  15. G.M. Wang, S.S. Fang, X.S. Xiao, Q. Hua, J.Z. Gu, and YD. Dong, Microstructure and properties of Zr65Al10Ni10Cu15 amorphous plates rolled in the supercooled liquid region, Mater. Sci. Eng. A, 373(2004), No. 1–2, p. 217.

    Article  Google Scholar 

  16. M. Gogebakan, The effect of Si addition on crystallization behaviour of amorphous Al-Y-Ni alloy, J. Mater. Eng. Perform., 13(2004), No. 4, p. 504.

    Article  Google Scholar 

  17. R.S. Lei, M.P. Wang, H.P. Wang, and S.Q. Xu, New insights on the formation of supersaturated Cu-Nb solid solution prepared by mechanical alloying, Mater. Charact, 118(2016), p. 324.

    Article  Google Scholar 

  18. M.A. Morris and D.G. Morris, Microstructure refinement and associated strength of copper alloys obtained by mechanical alloying, Mater. Sci. Eng. A, 111(1989), p. 115.

    Article  Google Scholar 

  19. A. Benghalem and D.G. Morris, Microstructure and mechanical properties of concentrated alloys prepared by mechanical alloying, Mater. Sci. Eng. A, 161(1993), No. 2, p. 255.

    Article  Google Scholar 

  20. E. Botcharova, M. Heilmaier, J. Freudenberger, G. Drew, D. Kudashow, U. Martin, and L. Schultz, Supersaturated solid solution of niobium in copper by mechanical alloying, J. Alloys Compd, 351(2003), No. 1–2, p. 119.

    Article  Google Scholar 

  21. E. Botcharova, J. Freudenberger, and L. Schultz, Cu-Nb alloys prepared by mechanical alloying and subsequent heat treatment, J. Alloys Compd., 365(2004), No. 1–2, p. 157.

    Article  Google Scholar 

  22. S. Mula, H. Bahmanpour, S. Mal, P.C. Kang, M. Atwater, W. Jian, R.O. Scattergood, and C.C. Koch, Thermodynamic feasibility of solid solubility extension of Nb in Cu and their thermal stability, Mater. Sci. Eng. A, 539(2012), p. 330.

    Article  Google Scholar 

  23. R.S. Lei, M.P. Wang, Z. Li, H.G. Wei, W.C. Yang, Y.L. Jia, and S. Gong, Structure evolution and solid solubility extension of copper-niobium powders during mechanical alloying, Mater. Sci. Eng. A, 528(2011), No. 13–14, p. 4475.

    Article  Google Scholar 

  24. M. Azabou, H.I. Gharsallah, L. Escoda, J.J. Sunol, A.W. Kolsi, and M. Khitouni, Mechanochemical reactions in nano-crystalline Cu-Fe system induced by mechanical alloying in air atmosphere, Powder Technol., 224(2012), p. 338.

    Article  Google Scholar 

  25. M. Khitouni, R. Daly, M. Mhadhbi, and A. Kolsi, Structural evolution in nanocristalline Cu obtained by high energy mechanical milling: phases formation of copper oxides, J. Alloys Compd., 475(2009), No. 1–2, p. 581.

    Article  Google Scholar 

  26. S.M. Yoon, C. Nagarjuna, D.W. Shin, C.H. Lee, B. Madava-li, S.J. Hong, and K.H. Lee, Influence of milling atmosphere on thermoelectric properties of p-type Bi-Sb-Te based alloys by mechanical alloying, J. Korean Powder Metall. Inst, 24(2017), No. 5, p. 357.

    Article  Google Scholar 

  27. Z.Q. Zhao, Z. Xiao, Z. Li, M.N. Zhu, and Z.Q. Yang, Characterization of dispersion strengthened copper alloy prepared by internal oxidation combined with mechanical alloying, J. Mater. Eng. Perform., 26(2017), No. 11, p. 5641.

    Article  Google Scholar 

  28. M. do Carmo Amorim da Silva and S.J.G. de Lima, Evolution of mechanical alloying to obtain Cu-Al-Nb shape memory alloy, Mater. Res., 8(2005), No. 2, p. 169.

    Article  Google Scholar 

  29. L. Lutterotti, S. Matthies, and H. R. Wenk, MAUD: a friendly Java program for material analysis using diffraction, IUCr: Newsletter of the CPD, 21(1999), p.14.

    Google Scholar 

  30. J. Eckert, J.C. Holzer, and W.L. Johnson, Thermal stability and grain growth behavior of mechanically alloyed nano-crystalline Fe-Cu alloys, J. Appl. Phys., 73(1993), No. 1, p. 131.

    Article  Google Scholar 

  31. F.A. Mohamed, A dislocation model for the minimum grain size obtainable by milling, Acta Mater, 51(2003), No. 14, p. 4107.

    Article  Google Scholar 

  32. T. Bachaga, R. Daly, L. Escode, J.J. Suñol, and M. Khitouni, Amorphization of Al50(Fe2B)30Nb20 mixture by mechanical alloying, Metall. Mater. Trans. A, 44(2013), No. 10, p. 4718.

    Article  Google Scholar 

  33. M. Krifa, M. Mhadhbi, L. Escoda, J. Saurina, J.J. Suñol, N. Llorca-Isern, C. Artieda-Guzmán, and M. Khitouni, Phase transformation during mechanical alloying of Fe-30% Al-20% Cu, Powder Technol, 246(2013), p. 117.

    Article  Google Scholar 

  34. H.I. Gharsallah, T. Makhlouf, L. Escoda, J.J. Suñol, and M. Khitouni, Magnetic and microstructural proprieties of nano-crystalline Fe-25at% Al and Fe-25at% Al + 0.2at% B alloys prepared by mechanical alloying process, Eur. Phys. J. Plus, 131(2016), No. 7, p. 119.

    Article  Google Scholar 

  35. S. Bergheul, H. Tafat, and M. Azzaz, Formation and magnetic properties of nanocrystalline Fe60Co40 alloys produced by mechanical alloying, J. Mater. Eng. Perform., 15(2006), No. 3, p. 349.

    Article  Google Scholar 

  36. D.Y. Ying, and D.L. Zhang, Processing of Cu-Al2O3 metal matrix nanocomposite materials by using high energy ball milling, Mater. Sci. Eng. A, 286(2000), No. 1, p. 152.

    Article  Google Scholar 

  37. M. Gherib, A. Otmani, A. Djekoun, A. Bouasla, M. Poulain, and M. Legouira, Study of nanocrystalline NiAl alloys prepared by mechanical alloying, Defect Diffus. Forum, 329(2012), p. 19.

    Article  Google Scholar 

  38. Y.C. Zhang, J.Y. Tang, G.L. Wang, M. Zhang, and X.Y. Hu, Facile synthesis of submicron Cu2O and CuO crystallites from a solid metallorganic molecular precursor, J. Cryst. Growth, 294(2006), No. 2, p. 278.

    Article  Google Scholar 

  39. M.D. Abad, S. Parker, D. Kiene, M.M. Primorac, and P. Hosemann, Mcrostructure and mechanical properties of CUxNb1-x. alloys prepared by ball milling and high pressure torsion compacting, J. Alloys Compd., 630(2015), p. 117.

    Article  Google Scholar 

  40. W. Pfeiler, Alloy Physics: A Comprehensive Reference, John Wileys and Sons, New York, 2008.

    Google Scholar 

  41. R.S. Lei, S.Q. Xu, M.P. Wang, and H.P. Wang, Mcrostructure and properties of nanocrystalline copper-niobium alloy with high strength and high conductivity, Mater. Sci. Eng. A, 586(2013), p. 367.

    Article  Google Scholar 

  42. M. Slimi, M. Azabou, L. Escoda, J.J. Sunol, and M. Khitouni, Stacking faults and structural characterization of mechanically alloyed Ni50Cu(Fe2B)10P30 powders, Eur. Phys. J. Plus, 130(2015), No. 4, p. 72.

    Article  Google Scholar 

  43. S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, and P.V. Satyanarayana, X-ray peak broadening analysis of AA 6061100-x-x wt.% A12O3 nanocomposite prepared by mechanical alloying, Mater. Charact, 62(2011), No. 7, p. 661.

    Article  Google Scholar 

  44. Y.H. Zhao, HW. Sheng, and K. Lu, Mcrostructure evolution and thermal properties in nanocrystalline Fe during mechanical attrition, Acta Mater, 49(2001), No. 2, p. 365.

    Article  Google Scholar 

  45. C. Slama and M. Abdellaoui, Mcrostructure characterization of nanocrystalline (Ti0.9W0.1) C prepared by mechanical alloying, Int. J. Refract. Met. Hard Mater, 54(2016), p. 270.

    Article  Google Scholar 

  46. M. Slimi, M. Azabou, L. Escoda, J.J. Sunol, and M. Khitouni, Structural and microstructural properties of nanocrystalline Cu-Fe-Ni powders produced by mechanical alloying, Powder Technol., 266(2014), p. 262.

    Article  Google Scholar 

  47. I. Hideaki, M. Toshiyuki, and N. Keiji, Measurement of enthalpies of formation of niobium oxides at 920 K in a Tian-Calvet-type calorimeter, J. Chem. Thermodyn., 16(1984), No. 5, p. 411.

    Article  Google Scholar 

  48. K.T. Jacob, C. Shekhar, M. Vinay, and Y. Waseda, Thermodynamic properties of niobium oxides, J. Chem. Eng. Data, 55(2010), No 11, p. 4854.

    Article  Google Scholar 

  49. R. Novakovic, Thermodynamics, surface properties and microscopic functions of liquid Al-Nb and Nb-Ti alloys, J. Non-Cryst. Solids, 356(2010), No. 31–32, p. 1593.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virgil Optasanu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaara, K., Chemingui, M., Optasanu, V. et al. Solid solution evolution during mechanical alloying in Cu-Nb-Al compounds. Int J Miner Metall Mater 26, 1129–1139 (2019). https://doi.org/10.1007/s12613-019-1820-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1820-y

Keywords

Navigation