Skip to main content
Log in

Corrosion resistance evaluation of highly dispersed MgO-MgAl2O4-ZrO2 composite and analysis of its corrosion mechanism: A chromium-free refractory for RH refining kilns

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The corrosion resistance behavior of a highly dispersed MgO-MgAl2O4-ZrO2 composite refractory material is examined by testing with high-basicity and low-basicity RH (Ruhrstahl-Hereaeus) slags. The composite material exhibits greater resistance to the RH slags than the traditional MgO-Cr2O3 composite, MgO-ZrO2 composite, and MgO-MgAl2O4-ZrO2 composite. On the basis of the microstructural analysis and mechanisms calculations, the corrosion resistance behavior of the MgO-MgAl2O4-ZrO2 composite is attributable to its highly dispersed structure, which helps protect the high activity of ZrO2. When in contact with the slag, ZrO2 reacts with CaO to form the stable phase CaZrO3, which protects MgAl2O4 against corrosion, thereby enhancing the corrosion resistance of the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Aksel, B. Rand, F.L. Riley, and P.D. Warren, Mechanical properties of magnesia-spinel composites, J. Eur. Ceram. Soc., 22(2002), No. 5, p. 745.

    Article  Google Scholar 

  2. N.M. Khalil, Recent developments in magnesia-spinel refractory composites, Part 1, InterCeram, 57(2008), No. 6, p. 417.

    Google Scholar 

  3. N.M. Khalil, Recent developments in magnesia-spinel refractory composites, Part 2, InterCeram, 58(2009), No. 1, p. 20.

    Google Scholar 

  4. M.D. Crites, M. Karakus, M.E. Schlesinger, M. Somerville, and S.Y. Sun, Interaction of chrome-free refractories with copper smelting and converting slags, Can. Metall. Q., 39(2000), No. 2, p. 129.

    Article  Google Scholar 

  5. Y.H. Sun, Y.N. Zeng, R. Xu, and K.K. Cai, Formation mechanism and control of MgO-Al2O3 inclusions in non-oriented silicon steel, Int. J. Miner. Metall. Mater., 21(2014), No. 11, p. 1068.

    Article  Google Scholar 

  6. P. Jiang, G.X. Yin, M.W. Yan, J.L. Sun, B. Li, and Y. Li, A new synthetic route to MgO-MgAl2O4-ZrO2 highly dispersed composite material through formation of Mg5Al24Zr17O12 metastable phase: Synthesis and physical properties, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 332.

    Article  Google Scholar 

  7. S.X. Zhao, B.L. Cai, H.G. Sun, G. Wang, H.X. Li, and X.Y. Song, Thermodynamic simulation of the effect of slag chemistry on the corrosion behavior of alumina-chromia refractory, Int. J. Miner. Metall. Mater, 23(2016), No. 12, p. 1458.

    Article  Google Scholar 

  8. J. Guo, S.S. Cheng, H.J. Guo, and Y.G. Mei, Novel mechanism for the modification of Al2O3-based inclusions in ultra-low carbon Al-killed steel considering the effects of magnesium and calcium, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 280.

    Article  Google Scholar 

  9. D. Mohapatra and D. Sarkar, Preparation of MgO-MgAl2O4 composite for refractory application, J. Mater. Process. Technol., 189(2007), No. 1–3, p. 279.

    Article  Google Scholar 

  10. C. Aksel and P.D. Warren, Work of fracture and fracture surface energy of magnesia-spinel composites, Compos. Sci. Technol., 63(2003), No. 10, p. 1433.

    Article  Google Scholar 

  11. Y.L. Bruni, L.B. Garrido, and E.F. Aglietti, Reaction and phases from monoclinic zirconia and calcium aluminate cement at high temperatures, Ceram. Int., 38(2012), No. 5, p. 4237.

    Article  Google Scholar 

  12. R. Ceylantekin and C. Aksel, Improvements on corrosion behaviours of MgO-spinel composite refractories by addition of ZrSiO4, J. Eur. Ceram. Soc., 32(2012), No. 4, p. 727.

    Article  Google Scholar 

  13. C. Aksel, P.D. Warren and F.L. Riley, Fracture behavior of magnesia and Magnesia-spinel composites before and after thermal shock, J. Eur. Ceram. Soc., 24(2004), No. 8, p. 2407.

    Article  Google Scholar 

  14. J. Szczerba, Chemical corrosion of basic refractories by cement kiln materials, Ceram. Int., 36(2010), No. 6, p. 1877.

    Article  Google Scholar 

  15. Z. Guo, S. Palco, and M. Rigaud, Reaction characteristics of magnesia-spinel refractories with cement clinker, Int. J. Appl. Ceram. Technol., 2(2005), No. 4, p. 327.

    Article  Google Scholar 

  16. M.W. Yan, Y. Li, G.X. Yin, S.H. Tong, and J.H. Chen, Synthesis and characterization of a MgO-MgAl2O4-ZrO2, composite with a continuous network microstructure, Ceram. Int., 43(2017), No. 8, p. 5914.

    Article  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (No. 51872023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Xing or Peng Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Yn., Xing, Y., Jiang, P. et al. Corrosion resistance evaluation of highly dispersed MgO-MgAl2O4-ZrO2 composite and analysis of its corrosion mechanism: A chromium-free refractory for RH refining kilns. Int J Miner Metall Mater 26, 1038–1046 (2019). https://doi.org/10.1007/s12613-019-1807-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1807-8

Keywords

Navigation