Skip to main content

Advertisement

Log in

Microstructure and mechanical properties of AA6063 aluminum alloy wire fabricated by friction stir back extrusion (FSBE) process

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

In the present work, the friction stir back extrusion (FSBE) process was used as a novel method for the fabrication of AA6063 aluminum alloy wire. Scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), tensile and hardness tests were performed. The FSBE via the rotational speed of 475 r/min resulted in fine equiaxed grains, and the mean grain size decreased from 179.0 µm to 15.5 µm due to the occurrence of dynamic recrystallization (DRX). Heat generated by the FSBE changed the size and volume fraction of the Mg2Si precipitated particles. The minimum particle size and maximum volume fraction obtained in the sample were processed by rotational speeds of 475 and 600 r/min, respectively. The 475-r/min sample had the maximum hardness value due to having the lowest grain size (i.e., 15.5 µm) and the presence of many fine Mg2Si precipitates in the aluminum matrix. With increasing rotational speed up to 600 r/min, the hardness decreased, owing to the growth of both grains and precipitates. The FSBE process with a rotational speed of 475 r/min increased the tensile strength (from 150 to 209 MPa) and ductility (from 21.0% to 30.2%) simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nandy, K.K. Ray, and D. Das, Process model to predict yield strength of AA6063 alloy, Mater. Sci. Eng. A, 644(2015), p. 413.

    Article  Google Scholar 

  2. G. Al-Marahleh, Effect of heat treatment on the distribution and volume fraction of Mg2Si in structural aluminum alloy 6063, Met. Sci. Heat Treat., 48(2006), No. 5–6, p. 205.

    Article  Google Scholar 

  3. L. Aydi, M. Khlif, C. Bradai, S. Spigarelli, M. Cabibbob, and M. El-Mehtedi, Mechanical properties and microstructure of primary and secondary AA6063 aluminum alloy after extrusion and T5 heat treatment, Mater. Today: Proc., 2(2015), No. 10, p. 4890.

    Google Scholar 

  4. L. Karthikeyan and V.S.S. Kumar, Relationship between process parameters and mechanical properties of friction stir processed AA6063-T6 aluminum alloy, Mater. Des., 32(2011), No. 5, p. 3085.

    Article  Google Scholar 

  5. G. Das, M. Das, S. Ghosh, P. Dubey, and A.K. Ray, Effect of aging on mechanical properties of 6063 Al-alloy using instrumented ball indentation technique, Mater. Sci. Eng. A, 527(2010), No. 6, p. 1590.

    Article  Google Scholar 

  6. R.A. Siddiqui, H.A. Abdullah, and K.R. Al-Belushi, Influence of aging parameters on the mechanical properties of 6063 aluminum alloy, J. Mater. Process. Technol., 102(2000), No. 1–3, p. 234.

    Article  Google Scholar 

  7. S.K. Panigrahi, R. Jayaganthan, and V. Pancholi, Effect of plastic deformation conditions on microstructural characteristics and mechanical properties of Al 6063 alloy, Mater. Des., 30(2009), No. 6, p. 1894.

    Article  Google Scholar 

  8. N. Serban, N. Ghiban, and V.D. Cojocaru, Mechanical behavior and microstructural development of 6063-T1 aluminum alloy processed by equal-channel angular pressing (ECAP): Die channel angle influence, JOM, 65(2013), No. 11, p. 1411.

    Article  Google Scholar 

  9. N. Serban, V.D. Cojocaru, and M. Butu, Mechanical behavior and microstructural development of 6063-T1 aluminum alloy processed by equal-channel angular pressing (ECAP): Pass number influence, JOM, 64(2012), No. 5, p. 607.

    Article  Google Scholar 

  10. Y.S. Sato, H. Kokawa, M. Enomoto, and S. Jogan, Microstructural evolution of 6063 aluminum during friction-stir welding, Metall. Mater. Trans. A, 30(1999), No. 9, p. 2429.

    Article  Google Scholar 

  11. F. Abu-Farha, Extruded Tubing via Friction Stir Forming, US Provisional Patent, Appl. 61/547148, 2011.

  12. F. Abu-Farha, A preliminary study on the feasibility of friction stir back extrusion, Scr. Mater., 66(2012), No. 9, p. 615.

    Article  Google Scholar 

  13. I. Dinaharan, R. Sathiskumar, S.J. Vijay, and N. Murugan, Microstructural characterization of pure copper tubes produced by a novel method friction stir back extrusion, Procedia Mater. Sci., 5(2014), p. 1502.

    Article  Google Scholar 

  14. M.S. Khorrami and M. Movahedi, Microstructure evolutions and mechanical properties of tubular aluminum produced by friction stir back extrusion, Mater. Des., 65(2015), p. 74.

    Article  Google Scholar 

  15. N. Mathew, I. Dinaharan, S.J. Vijay, and N. Murugan, Microstructure and mechanical characterization of aluminum seamless tubes produced by friction stir back extrusion, Trans. Indian Inst. Met., 69(2016), No. 10, p. 1811.

    Article  Google Scholar 

  16. Y. Hangai, Y. Nakano, T. Utsunomiya, O. Kuwazuru, and N. Yoshikawa, Drop weight impact behavior of Al-Si-Cu alloy foam-filled thin-walled steel pipe fabricated by friction stir back extrusion, J. Mater. Eng. Perform., 26(2017), No. 2, p. 894.

    Article  Google Scholar 

  17. M.A. Ansari, R.A. Behnagh, M. Narvan, E.S. Naeini, M.K.B. Givi, and H.T. Ding, Optimization of friction stir extrusion (FSE) parameters through Taguchi technique, Trans. Indian Inst. Met., 69(2016), No. 7, p. 1351.

    Article  Google Scholar 

  18. W. Tang and A.P. Reynolds, Production of wire via friction extrusion of aluminum alloy machining chips, J. Mater. Process. Technol., 210(2010), No. 15, p. 2231.

    Article  Google Scholar 

  19. H. Zhang, X. Li, W. Tang, X. Deng, A.P. Reynolds, and M.A. Sutton, Heat transfer modeling of the friction extrusion process, J. Mater. Process. Technol., 221(2015), p. 21.

    Article  Google Scholar 

  20. G. Buffa, D. Campanella, L. Fratini, and F. Micari, AZ31 magnesium alloy recycling through friction stir extrusion process, Int. J. Mater. Form., 9(2016), No. 5, p. 613.

    Article  Google Scholar 

  21. H. Zhang, X. Zhao, X. Deng, M.A. Sutton, A.P. Reynolds, S.R. McNeill, and X. Ke, Investigation of material flow during friction extrusion process, Int. J. Mech. Sci., 85(2014), p. 130.

    Article  Google Scholar 

  22. M. Sharifzadeh, M.A. Ansari, M. Narvan, R.A. Behnagh, A. Araee, and M.K.B. Givi, Evaluation of wear and corrosion resistance of pure Mg wire produced by friction stir extrusion, Trans. Nonferrous Met. Soc. China, 25(2015), No. 6, p. 1847.

    Article  Google Scholar 

  23. X. Li, W. Tang, A.P. Reynolds, W.A. Tayon, and C.A. Brice, Strain and texture in friction extrusion of aluminum, J. Mater. Process. Technol., 229(2016), p. 191.

    Article  Google Scholar 

  24. R.A. Behnagh, R. Mahdavinejad, A. Yavari, M. Abdollahi, and M. Narvan, Production of wire from AA7277 aluminum chips via friction-stir extrusion (FSE), Metall. Mater. Trans. B, 45(2014), No. 4, p. 1484.

    Article  Google Scholar 

  25. F.J Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena (2nd Ed.), Elsevier, London, 2004.

    Google Scholar 

  26. J. Van De Langkruis, W.H. Kool, C.M. Sellars, M.R. Van Der Winden, and S. Van Der Zwaag, The effect of β, β′ and β″ precipitates in a homogenized AA6063 alloy on the hot deformability and the peak hardness, Mater. Sci. Eng. A, 299(2001), No. 1–2, p. 105.

    Article  Google Scholar 

  27. T. Sheppard, Extrusion of Aluminum Alloys, Kluwer Academic Publisher, London, 1999.

    Book  Google Scholar 

  28. H. Schmidt, J. Hattel, and J. Wert, An analytical model for the heat generation in friction stir welding, Modell. Simul. Mater. Sci. Eng., 12(2003), p. 143.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Grant program from Babol Noshirvani University of Technology (Nos. BNUT/370725/98 and BNUT/393044/98).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman Nourouzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamali, G., Nourouzi, S. & Jamaati, R. Microstructure and mechanical properties of AA6063 aluminum alloy wire fabricated by friction stir back extrusion (FSBE) process. Int J Miner Metall Mater 26, 1005–1012 (2019). https://doi.org/10.1007/s12613-019-1806-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1806-9

Keywords

Navigation