Effect of high anodic polarization on the passive layer properties of superduplex stainless steel friction stir welds at different chloride electrolyte pH values and temperatures

  • L. A. Santa-Cruz
  • G. Machado
  • A. A. Vicente
  • T. F. C. Hermenegildo
  • T. F. A. SantosEmail author


The conditions used for friction stir welding of duplex stainless steels determine the resulting mechanical and corrosion performance of the material. This study investigates the corrosion resistance of UNS S32750 and S32760 superduplex stainless steels (SDSSs) joined by friction stir welding, employing cyclic polarization, Mott-Schottky, and microscopy techniques for analysis. The microscopy images indicated the presence of a deleterious intermetallic phase after electrolytic etching of S32760, as well as decreased corrosion resistance. The presence of molybdenum in the steels promoted better passive behavior at low pH. The Mott-Schottky curves revealed p-n heterojunction behavior of the passive oxide. Images acquired after the polarization test by scanning electron microscopy showed higher passivation propensity with increases of temperature and pH.


superduplex stainless steel friction stir welding corrosion resistance cyclic polarization Mott-Schottky 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank FACEPE, CNPq, and UFPE for financial support, and CETENE for electrochemical measurements. The SDSS steel plates were kindly donated by Outokumpu (S32750) and Weir Materials (S32760). Scholarships were provided by CNPq.


  1. [1]
    M.F. McGuire, Stainless Steels for Design Engineers, ASM International, Ohio, 2008.Google Scholar
  2. [2]
    S.S.M. Tavares, J.M. Pardal, L.D. Lima, I.N. Bastos, A.M. Nascimento, and J.A. de Souza, Characterization of microstructure, chemical composition, corrosion resistance and toughness of a multipass weld joint of superduplex stainless steel UNS S32750, Mater. Charact., 58(2007), No. 7, p. 610.CrossRefGoogle Scholar
  3. [3]
    R.S. Mishra and M.W. Ma, Friction stir welding and processing, Mater. Sci. Eng. R, 50(2005), No. 1–2, p. 1.CrossRefGoogle Scholar
  4. [4]
    M.K. Mishra, G. Gunasekaran, A.G. Rao, B.P. Kashyap, and N. Prabhu, Effect of multipass friction stir processing on mechanical and corrosion behavior of 2507 super duplex stainless steel, J. Mater. Eng. Perform., 26(2017), No. 2, p. 849.CrossRefGoogle Scholar
  5. [5]
    M. Atapour, H. Sarlak, and M. Esmailzadeh, Pitting corrosion susceptibility of friction stir welded lean duplex stainless steel joints, Int. J. Adv. Manuf. Technol, 83(2016), No. 5–8, p. 721.CrossRefGoogle Scholar
  6. [6]
    Z.Q. Zhang, H.Y. Jing, L.Y. Xu, Y.D. Han, L. Zhao, and J.L. Zhang, Influence of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel welding joints, Appl. Surf Sci., 394(2017), p. 297.CrossRefGoogle Scholar
  7. [7]
    T. Takei, M. Yabe, and F.G. Wei, Effect of cooling condition on the intergranular corrosion resistance of UNS S32506 duplex stainless steel, Corros. Sci., 122(2017), p. 80.CrossRefGoogle Scholar
  8. [8]
    F. Iacoviello, V. Di Cocco, and L.D. Agostino, Integranular corrosion susceptibility analysis in stainless steels (duplex) stainless steels, Procedia Struct. Integrity, 3(2017), p. 276.CrossRefGoogle Scholar
  9. [9]
    E.E. Oguzie, J.B. Li, Y.Q. Liu, D.M. Chen, Y. Li, K. Yang, and F.H. Wang, The effect of Cu addition on the electrochemical corrosion and passivation behavior of stainless steels, Electrochim. Acta, 55(2010), No. 17, p. 5028.CrossRefGoogle Scholar
  10. [10]
    M. Metikoš-Hukovic, R. Babic, Z. Grubač, Ž. Petrovic, and N. Lajçi, High corrosion resistance of austenitic stainless steel alloyed with nitrogen in an acid solution, Corros. Sci., 53(2011), No. 6, p. 2176.CrossRefGoogle Scholar
  11. [11]
    Z.Y. Cui, L.W. Wang, H.T. Ni, W.K. Hao, C. Man, S.S. Chen, X. Wang, Z.Y. Liu, and X.G. Li, Influence of temperature on the electrochemical and passivation behavior of 2507 super duplex stainless steel in simulated desulfurized flue gas condensates, Corros. Sci., 118(2017), p. 31.CrossRefGoogle Scholar
  12. [12]
    T.S. Li, L. Liu, B. Zhang, Y. Li, and F.H. Wang, Growth kinetics of metastable pits on sputtered nanocrystalline stainless steel, Corros. Sci., 124(2017), p. 46.CrossRefGoogle Scholar
  13. [13]
    G.T. Burstein, M. Carboneras, and B.T. Daymond, The temperature dependence of passivity breakdown on a titanium alloy determined by cyclic noise thermammetry, Electrochim. Acta, 55(2010), No. 27, p. 7860.CrossRefGoogle Scholar
  14. [14]
    M.V. Cardoso, S.T. Amaral, and E.M.A. Martini, Temperature effect in the corrosion resistance of Ni-Fe-Cr alloy in chloride medium, Corros. Sci., 50(2008), No. 9, p. 2429.CrossRefGoogle Scholar
  15. [15]
    P.D. Krell, S.X. Li, and H.B. Cong, Synergistic effect of temperature and HCl concentration on the degradation of AI-SI 410 stainless steel, Corros. Sci., 122(2017), p. 41.CrossRefGoogle Scholar
  16. [16]
    H.P. Leckie, Effect of pH on the stable passivity of stainless steels, Corrosion, 24(1968), No. 3, p. 70.CrossRefGoogle Scholar
  17. [17]
    K. Sugimoto and Y. Sawada, The role of molybdenum additions to austenitic stainless steels in the inhibition of pitting in acid chloride solutions, Corros. Sci., 17(1977), No. 5, p. 425.CrossRefGoogle Scholar
  18. [18]
    G.T. Burstein and B.T. Daymond, The remarkable passivity of austenitic stainless steel in sulphuric acid solution and the effect of repetitive temperature cycling, Corros. Sci., 51(2009), No. 10, p. 2249.CrossRefGoogle Scholar
  19. [19]
    C. Escrivà-Cerdán, E. Blasco-Tamarit, D.M. García-García, J. García-Antón, R. Akid, and J. Walton, Effect of temperature on passive film formation of UNS N08031 Cr-Ni alloy in phosphoric acid contaminated with different aggressive anions, Electrochim. Acta, 111(2013), p. 552.CrossRefGoogle Scholar
  20. [20]
    S.R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes, Plenum Press, New York, 1980.CrossRefGoogle Scholar
  21. [21]
    S. Mischler, A. Vogel, H.J. Mathieu, and D. Landolt, The chemical composition of the passive film on Fe24Cr and Fe24Cr11Mo studied by AES, XPS and SIMS, Corros. Sci., 32(1991), No. 9, p. 925.CrossRefGoogle Scholar
  22. [22]
    T.F.A. Santos, H.S. Idagawa, and A.J. Ramirez, Thermal history in UNS S32205 duplex stainless steel friction stir welds, Sci. Technol. Weld. Joining, 19(2014), No. 2, p. 150.CrossRefGoogle Scholar
  23. [23]
    H.S. Idagawa, T.F.A. Santos, and A.J. Ramirez, Differential evolution algorithm applied to FSW model calibration, J. Phys. Conf. Ser., 490(2014), No. 1, art. No. 012215.Google Scholar
  24. [24]
    T.F.A. Santos, E.A. Torres, T.F.C. Hermengildo, and A.J. Ramirez, Development of ceramic backing for friction stir welding and processing, Weld. Int., 30(2016), No. 5, p. 338.CrossRefGoogle Scholar
  25. [25]
    T.F.A. Santos, E.A. Torres, J.C. Lippold, and A.J. Ramirez, Detailed microstructural characterization and restoration mechanisms of duplex and superduplex stainless steel friction-stir-welded joints, J. Mater. Eng. Perform., 25(2016), No. 12, p. 5173.CrossRefGoogle Scholar
  26. [26]
    T.F.A. Santos, E.A. Torres, E.B. Fonseca, and A.J. Ramirez, Friction stir welding of duplex and superduplex stainless steels and some aspects of microstructural characterization and mechanical performance, Mater. Res., 19(2016), No. 1, p. 117.CrossRefGoogle Scholar
  27. [27]
    ASTM International, ASTM A923-14: Standard Test Methods for Detecting Detrimental Intermetallic Phase in Duplex Austenitic/Ferritic Stainless Steels, West Conshohocken, PA, 2014.Google Scholar
  28. [28]
    T.F.A. Santos, R.R. Marinho, M.T.P. Paes, and A.J. Ramirez, Microstructure evaluation of UNS S32205 duplex stainless steel friction stir welds, Rem: Rev. Esc. Minas, 66(2013), No. 2, p. 187.Google Scholar
  29. [29]
    E.M. Westin, Microstructure and Properties of Welds in the Lean Duplex Stainless Steel LDX 2101 [Dissertation], Royal Institute of Technology, Stockholm, 2010.Google Scholar
  30. [30]
    W.S. Tait, An Introduction to Eletrochemical Corrosion Testing For Practicing Engineers and Scientists, Pair O Docs Pubns, Racine, 1994.Google Scholar
  31. [31]
    G.T. Burstein, A hundred years of Tafel’s Equation: 1905–2005, Corros. Sci., 47(2005), p. 2858.CrossRefGoogle Scholar
  32. [32]
    N. Takeno, Atlas of Eh-pH Diagrams: Intercomparison of Thermodynamic Databases, Geological Survey of Japan Open File Report No. 419, National Institute of Advanced Industrial Science and Technology, Tokyo, 2005Google Scholar
  33. [33]
    P.C. Pistorius and G.T. Burstein, Metastable pitting corrosion of stainless steel and the transition to stability, Philos. Trans. R. Soc. A, 341(1992), p. 531.CrossRefGoogle Scholar
  34. [34]
    C.O.A. Olsson and D. Landolt, Passive films on stainless steels—chemistry, structure and growth, Electrochim. Acta, 48(2003), No. 9, p. 1093.CrossRefGoogle Scholar
  35. [35]
    G.T. Burstein and D. Sazou, Passivity and Localized Corrosion, Elsevier Inc., 2016. doi: Scholar
  36. [36]
    I. Betova, M. Bojinov, T. Laitinen, K. Mäkelä, P. Pohjanne, and T. Saario, The transpassive dissolution mechanism of highly alloyed stainless steels I. Experimental results and modelling procedure, 44(2002), No. 2, p. 2675.Google Scholar
  37. [37]
    H. Sarlak, M. Atapour, and M. Esmailzadeh, Corrosion behavior of friction stir welded lean duplex stainless steel, Mater. Des., 66(2015), p. 209.CrossRefGoogle Scholar
  38. [38]
    N.E. Hakiki, B. Maachi, F. Mechehoud, C. Pirri, A. Mehdaoui, and J.L. Bubendorff, Structural and semiconductive investigation of passive films and thermally grown oxides on stainless steels, [in] 7th European Stainless Steel Conference, Como, 2011, p. 58.Google Scholar
  39. [39]
    S. Fujimoto and H. Tsuchiya, Semiconductor Property of Passive Films and Corrosion Behavior of Fe-Cr Alloys, [In] Y. Waseda, S. Suzuki, Eds., Characterization of Corrosion Products on Steel Surfaces, Springer, Berlin, Heidelberg, 2006, p. 33.CrossRefGoogle Scholar
  40. [40]
    L.V. Taveira, M.F. Montemor, M. Da Cuhha Belo, M.G. Ferreira, and L.F.P. Dick, Influence of incorporated Mo and Nb on the Mott-Schottky behaviour of anodic films formed on AISI 304L, Corros. Sci., 52(2010), No. 9, p. 2813.CrossRefGoogle Scholar
  41. [41]
    N.B. Hakiki, S. Boudin, B. Rondot, and M. Da Cunha Belo, The electronic structure of passive films formed on stainless steels, Corros. Sci., 37(1995), No. 11, p. 1809.CrossRefGoogle Scholar
  42. [42]
    S. Ningshen, U.K. Mudali, V.K. Mittal, and H.S. Khatak, Semiconducting and passive films properties of nitrogen-containing type 316LN stainless steel, Corros. Sci., 49(2007), No. 2, p. 481.CrossRefGoogle Scholar
  43. [43]
    E.C. Paredes, A. Bautista, S.M. Alvarez, and F. Velasco, Influence of the forming process of corrugated stainless steels on their corrosion behaviour in simulated pore solutions, Corros. Sci., 58(2012), p. 52.CrossRefGoogle Scholar
  44. [44]
    L. Wang, C.Y. Lee, and P. Schmuki, Solar water splitting: preserving the beneficial smaller feature size in porous α-Fe2O3 photoelectrodes during annealing, J. Mater. Chem. A, 1(2012), No. 2, p. 212.CrossRefGoogle Scholar
  45. [45]
    D.R. Chowdhury, L. Spiccia, S.S. Amritphale, A. Paul, and A. Singh, A robust iron oxyhydroxide water oxidation catalyst operating under near neutral and alkaline conditions, J. Mater. Chem. A, 4(2016), No. 10, p. 3655.CrossRefGoogle Scholar
  46. [46]
    C.Y. Lin, D. Mersch, D.A. Jefferson, and E. Reisner, Cobalt sulphide microtube array as cathode in photoelectrochemical water splitting with photoanodes, Chem. Sci., 5(2014), No. 12, p. 4906.CrossRefGoogle Scholar
  47. [47]
    L. Tan and Y. Yang, In situ phase transformation of Laves phase from Chi-phase in Mo-containing Fe-Cr-Ni alloys, Mater. Lett., 158(2015), p. 233.CrossRefGoogle Scholar
  48. [48]
    I.J. Marques, A.A. Vicente, J.A.S. Tenório, and T.F.A. Santos, Double kinetics of intermetallic phase precipitation in UNS S32205 duplex stainless steels submitted to isothermal heat treatment, Mater. Res., 20(2017), Suppl. 2, p. 152.CrossRefGoogle Scholar
  49. [49]
    S.B. Kim, K.W. Paik, and Y.G. Kim, Effect of Mo substitution by W on high temperature embrittlement characteristics in duplex stainless steels, Mater. Sci. Eng. A, 247(1998), No. 1–2, p. 67.CrossRefGoogle Scholar
  50. [50]
    J.S. Kim and H.S. Kwon, Effects of tungsten on corrosion and kinetics of sigma phase formation of 25% chromium duplex stainless steels, Corrosion, 55(1999), No. 5, p. 512.CrossRefGoogle Scholar
  51. [51]
    A.R. Akisanya, U. Obi, and N.C. Renton, Effect of ageing on phase evolution and mechanical properties of a high tungsten super-duplex stainless steel, Mater. Sci. Eng. A, 535(2012), p. 281.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • L. A. Santa-Cruz
    • 1
    • 2
  • G. Machado
    • 2
  • A. A. Vicente
    • 3
  • T. F. C. Hermenegildo
    • 1
  • T. F. A. Santos
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringUniversidade Federal de PernambucoRecifeBrazil
  2. 2.Center of Nanotechnology, Centro de Tecnologias Estratégicas do NordesteCETENERecifeBrazil
  3. 3.Department of Chemical EngineeringUniversidade de São PauloSão PauloBrazil

Personalised recommendations