Skip to main content
Log in

Synthesis of uniform hexagonal Ag nanoprisms with controlled thickness and tunable surface plasmon bands

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

In this work, we synthesized monodispersed hexagonal Ag nanoprisms in high yields in a system of poly(vinylpyrrolidone) (PVP) in N-methylpyrrolidone (NMP). A blue shift occurred and was strongly dependent on the thickness of the uniform Ag nanoprisms, which had almost the same radial area. When the Ag nanoprisms grew thicker, their in-plane dipole resonance peaks markedly shifted toward shorter wavelengths (i.e., blue shift). PVP played a critical role of favoring vertical growth of the Ag nanoplates, preventing aggregation, and inducing the formation of Ag hexagonal nanoprisms (HNPs) through the transformation from thin Ag triangular nanoprisms (TNPs). Compared with similar previous research, the present study provides quite uniform Ag hexagonal nanoplates, which makes the blue shift related more solely and distinctly to the thickness of the Ag nanoprisms. The findings of this work provide a new perspective toward understanding the unique optical characteristics of Ag HNPs with different aspect ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.Z. Zhu, X.L. Zhuo, Q. Li, Z. Yang, and J.F. Wang, Gold nanobipyramid-supported silver nanostructures with narrow plasmon linewidths and improved chemical stability, Adv. Funct. Mater., 26(2016), No. 3, p. 341.

    Article  Google Scholar 

  2. Y.F. Zhang, Z. Ji, K. Chen, B.W. Liu, C.C. Jia, and S.W. Yang, Study on the preparation of Pt nanocapsules, Int. J. Miner. Metall. Mater., 24(2017), No. 1, p. 109.

    Article  Google Scholar 

  3. H.J. You and J.X. Fang, Particle-mediated nucleation and growth of solution-synthesized metal nanocrystals: A new story beyond the LaMer curve, Nano Today, 11(2016), No. 2, p. 145.

    Article  Google Scholar 

  4. Y. Xia, Y. Xiong, B. Lim, and S.E. Skrabalak, Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?, Angew. Chem. Int. Ed., 48(2009), No. 1, p. 60.

    Article  Google Scholar 

  5. Y.G. Sun, Controlled synthesis of colloidal silver nanoparticles in organic solutions: empirical rules for nucleation engineering, Chem. Soc. Rev., 42(2013), No. 7, p. 2497.

    Article  Google Scholar 

  6. B. Khodashenas and H.R. Ghorbani, Synthesis of silver nanoparticles with different shapes, Arabian J. Chem., 2015. https://doi.org/10.1016/j.arabjc.2014.12.014.

  7. X.W. Han, X.F. Zeng, J. Zhang, H.F. Huan, J.X. Wang, N.R. Foster, and J.F. Chen, Synthesis of transparent dispersion of monodispersed silver nanoparticles with excellent conductive performance using high-gravity technology, Chem. Eng. J., 296(2016), p. 182.

    Article  Google Scholar 

  8. H.X. Yu, Q. Zhang, H.Y. Liu, M. Dahl, J.B. Joo, N. Li, L.J. Wang, and Y.D. Yin, Thermal synthesis of silver nanoplates revisited: A modified photochemical process, ACS Nano, 8(2014), No. 10, p. 10252.

    Article  Google Scholar 

  9. C.B. Gao, Z.D. Lu, Y. Liu, Q. Zhang, M.F. Chi, Q. Cheng, and Y.D. Yin, Highly stable silver nanoplates for surface plasmon resonance biosensing, Angew. Chem. Int. Ed., 51(2012), No. 23, p. 5629.

    Article  Google Scholar 

  10. Q. Zhang, J.P. Ge, T. Pham, J. Goebl, Y.X. Hu, Z.D. Lu, and Y.D. Yin, Reconstruction of silver nanoplates by UV irradiation: Tailored optical properties and enhanced stability, Angew. Chem. Int. Ed, 48(2009), No. 19, p. 3516.

    Article  Google Scholar 

  11. H. McArdle, E. Spain, T.E. Keyes, R.L. Stallings, M. Brennan-Fournet, and R.J. Forster, Triangular silver nanoplates: Properties and ultrasensitive detection of miRNA, Electrochem. Commun., 79(2017), p. 23.

    Article  Google Scholar 

  12. R.C. Jin, Y.W. Cao, C.A. Mirkin, K.L. Kelly, G.C. Schatz, and J.G. Zheng, Photoinduced conversion of silver nanospheres to nanoprisms, Science, 294(2001), No. 5548, p. 1901.

    Article  Google Scholar 

  13. Q. Zhang, N. Li, J. Goebl, Z.D. Lu, and Y.D. Yin, A systematic study of the synthesis of silver nanoplates: Is citrate a “magic” reagent?, J. Am. Chem. Soc., 133(2011), No. 46, p. 18931.

    Article  Google Scholar 

  14. G.S. Métraux and C.A. Mirkin, Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness, Adv. Mater., 17(2005), No. 4, p. 412.

    Article  Google Scholar 

  15. X.F. Zhao, B. Chen, C. Li, T. Wang, J. Zhang, X.L. Jiao, and D.R. Chen, Large-scale synthesis of size-controllable silver nanoplates and their application in detecting strong oxidants in aqueous solutions, Chem. Eng. J., 285(2016), p. 690.

    Article  Google Scholar 

  16. M.Z. Liu, M. Leng, C. Yu, X. Wang, and C. Wang, Selective synthesis of hexagonal Ag nanoplates in a solution-phase chemical reduction process, Nano Res. 3(2010), No. 12, p. 843.

    Article  Google Scholar 

  17. M. Maillard, S. Giorgio, and M. Pileni, Sliver nanodisks, Adv. Mater., 14(2002), No. 15, p. 1084.

    Article  Google Scholar 

  18. S.H. Chen and D.L. Carroll, Synthesis and characterization of truncated triangular silver nanoplates, Nano Lett., 2(2002), No. 9, p. 1003.

    Article  Google Scholar 

  19. Q. Zhang, Y. Yang, J.T. Li, R. Iurilli, S.F. Xie, and D. Qin, Citrate-free synthesis of silver nanoplates and the mechanistic study, ACS Appl. Mater. Interfaces, 5(2013), p. 6333.

    Article  Google Scholar 

  20. I. Washio, Y. Xiong, Y. Yin, and Y. Xia, Reduction by the end groups of poly(vinyl pyrrolidone): A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates, Adv. Mater., 18(2006), No. 13, p. 1745.

    Article  Google Scholar 

  21. L.P. Jiang, S. Xu, J.M. Zhu, J.R. Zhang, J.J. Zhu, and H.Y. Chen, Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings, Inorg. Chem., 43(2004), No. 19, p. 5877.

    Article  Google Scholar 

  22. I. Pastoriza-Santos and L.M. Liz-Marzán, Synthesis of silver nanoprisms in DMF, Nano Lett., 2(2002), No. 8, p. 903.

    Article  Google Scholar 

  23. M.H. Kim, J.J. Lee, J.B. Lee, and K.Y. Choi, Synthesis of silver nanoplates with controlled shapes by reducing silver nitrate with poly(vinyl pyrrolidone) in N-methylpyrrolidone, CrystEngComm, 15(2013), p. 4660.

    Article  Google Scholar 

  24. J. An, B. Tang, X.H. Ning, J. Zhou, B. Zhao, W.Q. Xu, C. Corredor, and J.R. Lombardi, Photoinduced shape evolution: From triangular to hexagonal silver nanoplates, J. Phys. Chem. C, 111(2007), No. 49, p. 18055.

    Article  Google Scholar 

  25. Z.L. Wang, Transmission electron microscopy of shape-controlled nanocrystals and their assemblies, J. Phys. Chem. B, 104(2012), No. 6, p. 1153.

    Article  Google Scholar 

  26. M. Tsuji, S. Gomi, Y. Maeda, M. Matsunaga, S. Hikino, K. Uto, T. Tsuji, and H. Kawazumi, Rapid transformation from spherical nanoparticles, nanorods, cubes, or bipyramids to triangular prisms of silver with PVP, citrate, and H2O2, Langmuir, 28(2012), No. 24, p. 8845.

    Article  Google Scholar 

  27. Q. Zhang, Y.X. Hu, S.R. Guo, J. Goebl, and Y.D. Yin, Seeded growth of uniform Ag nanoplates with high aspect ratio and widely tunable surface plasmon bands, Nano Lett., 10(2010), No. 12, p. 5037.

    Article  Google Scholar 

  28. J. Zeng, X.H. Xia, M. Rycenga, P. Henneghan, Q.G. Li, and Y.N. Xia, Successive deposition of silver on silver nanoplates: Lateral versus vertical growth, Angew. Chem. Int. Ed., 50(2011), No. 1, p. 244.

    Article  Google Scholar 

  29. D. Aherne, D.M. Ledwith, M. Gara, and J.M. Kelly, Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature, Adv. Funct. Mater., 18(2008), No. 14, p. 2005.

    Article  Google Scholar 

  30. K.L. Kelly, E. Coronado, L.L. Zhao, and G.C. Schatz, The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment, J. Phys. Chem. B, 107(2003), No. 3, p. 668.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Liu, X. & Huang, K. Synthesis of uniform hexagonal Ag nanoprisms with controlled thickness and tunable surface plasmon bands. Int J Miner Metall Mater 26, 796–802 (2019). https://doi.org/10.1007/s12613-019-1785-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1785-x

Keywords

Navigation