Skip to main content
Log in

A study of interparticulate strain in a hot-extruded SiCp/2014 Al composite

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

We report a correlative study of strain distribution and grain structure in the Al matrix of a hot-extruded SiC particulate-reinforced Al composite (SiCp/2014 A1). Finite element method (FEM) simulation and microstructure characterization indicate that the grain structure of the Al matrix is affected by the interparticulate strain distribution in the matrix during the process. Both electron-backscattered diffraction (EBSD) and selected-area electron diffraction (SAED) indicated localized misorientation in the Al matrix after hot extrusion. Scanning transmission electron microscopy (STEM) revealed fine and recrystallized grains adjacent to the SiC particulate and elongated grains between the particulates. This result is explained in terms of recrystallization under an interparticulate strain distribution during the hot extrusion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.S. Li, Y.S. Su, Q.B. Ouyang, and D. Zhang, In-situ carbon nanotube-covered silicon carbide particle reinforced aluminum matrix composites fabricated by powder metallurgy, Mater. Lett., 167(2016), p. 118.

    Article  Google Scholar 

  2. J.M. Root, D.P. Field, and T.W. Nelson, Crystallographic texture in the friction-stir-welded metal matrix composite Al6061 with 10 vol pct Al2O3, Metall. Mater. Trans. A, 40(2009), No. 9, p. 2109.

    Article  Google Scholar 

  3. S.J. Hong, H.M. Kim, D. Huh, C. Suryanarayana, and B.S. Chun, Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites, Mater. Sci. Eng., A, 347(2003), No. 1–2, p. 198.

    Article  Google Scholar 

  4. Z. Xue, Y. Huang, and M. Li, Particle size effect in metalli materials: A study by the theory of mechanism-based strain gradient plasticity, Acta Mater., 50(2002), No. 1, p. 149.

    Article  Google Scholar 

  5. D. Mandal and S. Viswanathan, Effect of re-melting on particle distribution and interface formation in SiC reinforced 2124Al matrix composite, Mater. Charact., 86(2013), p. 21.

    Article  Google Scholar 

  6. D. Mandal and S. Viswanathan, Effect of heat treatment on microstructure and interface of SiC particle reinforced 2124 A1 matrix composite, Mater. Charact., 85(2013), p. 73.

    Article  Google Scholar 

  7. G. Liu, G.J. Zhang, R.H. Wang, W. Hu, J. Sun, and K.H. Chen, Heat treatment-modulated coupling effect of multi-scale second-phase particles on the ductile fracture of aged aluminum alloys, Acta Mater., 55(2007), No. 1, p. 273.

    Article  Google Scholar 

  8. R. Vogt, Z. Zhang, Y. Li, M. Bonds, N.D. Browning, E.J. Lavernia, and J.M. Schoenung, The absence of thermal expansion mismatch strengthening in nanostructured metal-matrix composites, Scripta Mater., 61(2009), No. 11, p. 1052.

    Article  Google Scholar 

  9. J.S. Robinson and W. Redington, The influence of alloy composition on residual stresses in heat treated aluminium alloys, Mater. Charact., 105(2015), p. 47.

    Article  Google Scholar 

  10. J.Y. Song, Q. Guo, Q.B. Ouyang, Y.S. Su, J. Zhang, E.J. Lavernia, J.M. Schoenung, and D. Zhang, Influence of interfaces on the mechanical behavior of SiC particulate-reinforced Al-Zn-Mg-Cu composites, Mater. Sci. Eng. A, 644(2015), p. 79.

    Article  Google Scholar 

  11. Z.Z. Chen, Z.Q. Tan, G. Ji, G.L. Fan, D. Schryvers, Q.B. Ouyang, and Z.Q. Li, Effect of interface evolution on thermal conductivity of vacuum hot pressed SiC/Al composites, Adv. Eng. Mater., 17(2015), No. 7, p. 1077.

    Article  Google Scholar 

  12. S.Y. Wang, Q. Tang, D.J. Li, J.X. Zou, X.Q. Zeng, Q.B. Ouyang, and W.J. Ding, The hot workability of SiCp/2024 Al composite by stir casting, Mater. Manuf. Processes, 30(2015), No. 5, p. 624.

    Article  Google Scholar 

  13. A. Fathy, D. Ibrahim, O. Elkady, and M. Hassan, Evaluation of mechanical properties of 1050-Al reinforced with SiC particles via accumulative roll bonding process, J. Compos. Mater., 53(2019), No. 2, p. 209.

    Article  Google Scholar 

  14. N.E. Mahallawy, A. Fathy, and M. Hassan, Evaluation of mechanical properties and microstructure of A1/Al-12%Si multilayer via warm accumulative roll bonding process, J. Compos. Mater., 2017. https://doi.org/10.1177/0021998317692141

  15. N.E. Mahallawy, A. Fathy, W. Abdelaziem, and M. Hassan, Microstructure evolution and mechanical properties of A1/Al-12%Si multilayer processed by accumulative roll bonding (ARB), Mater. Sci. Eng., A, 647(2015), p. 127.

    Article  Google Scholar 

  16. A. Fathy, O. Elkady, and A. Abu-Oqail, Synthesis and characterization of Cu-ZrO2 nanocomposite produced by ther-mochemical process, J. Alloys Compd., 719(2017), p. 411.

    Article  Google Scholar 

  17. A. Fathy, Investigation on microstructure and properties of Cu-ZrO2 nanocomposites synthesized by in situ processing, Mater. Lett., 213(2018), p. 95.

    Article  Google Scholar 

  18. A. Fathy, A. Sadoun, and M. Abdelhameed, Effect of matrix/reinforcement particle size ratio (PSR) on the mechanical properties of extruded Al-SiC composites, Int. J. Adv. Manuf. Technol., 73(2014), No. 5–8, p. 1049.

    Article  Google Scholar 

  19. O. El-Kady and A. Fathy, Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites, Mater. Des., 54(2014), p. 348.

    Article  Google Scholar 

  20. A. Wagih, A. Fathy, D. Ibrahim, O. Elkady, and M. Hassan, Experimental investigation on strengthening mechanisms in Al-SiC nanocomposites and 3D FE simulation of Vickers indentation, J. Alloys Compd., 752(2018), p. 137.

    Article  Google Scholar 

  21. A. Wagih and A. Fathy, Improving compressibility and thermal properties of Al-Al2O3 nanocomposites using Mg particles, J. Mater. Sci., 53(2018), No. 16, p. 11393.

    Article  Google Scholar 

  22. A. Fathy and O. El-Kady, Thermal expansion and thermal conductivity characteristics of Cu-Al2O3 nanocomposites, Mater. Des., 46(2013), p. 355.

    Article  Google Scholar 

  23. J. Zhang, Q.B. Ouyang, Q. Guo, Z.Q. Li, G.L. Fan, Y.S Su, L. Jiang, E.J. Lavernia, J.M. Schoenung, and D. Zhang, 3D microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites, Compos. Sci. Technol., 123(2016), p. 1.

    Article  Google Scholar 

  24. H. Jiang, Z.G. Fan, and C.Y. Xie, 3D finite element simulation of deformation behavior of CP-Ti and working load during multi-pass equal channel angular extrusion, Mater. Sci. Eng. A, 485(2008), No. 1–2, p. 409.

    Article  Google Scholar 

  25. H. Jiang, Z.G. Fan, and C.Y. Xie, Finite element analysis of temperature rise in CP-Ti during equal channel angular extrusion, Mater. Sci. Eng. A, 513–514(2009), p. 109.

    Article  Google Scholar 

  26. V. Ocelík, J.A. Vreeling, and J.T.M. De Hosson, EBSP study of reaction zone in SiC/Al metal matrix composite prepared by laser melt injection, J. Mater. Sci., 36(2001), No. 20, p. 4845.

    Article  Google Scholar 

  27. M. Kamaya, Assessment of local deformation using EBSD: Quantification of local damage at grain boundaries, Mater. Charact., 66(2012), p. 56.

    Article  Google Scholar 

  28. J. Guo, S. Amira, P. Gougeon, and X.G. Chen, Effect of the surface preparation techniques on the EBSD analysis of a friction stir welded AA1100-B4C metal matrix composite, Mater. Charact., 62(2011), No. 9, p. 865.

    Article  Google Scholar 

  29. Z.P. Luo, Y.G. Song, and S.Q. Zhang, A TEM study of the microstructure of SiCp/Al composite prepared by pressure less infiltration method, Scripta Mater., 45(2001), No. 10, p. 1183.

    Article  Google Scholar 

  30. W.L Zhang, J.X. Wang, F. Yang, Z.Q. Sun, and M.Y. Gu, Recrystallization kinetics of cold-rolled squeeze-cast Al/SiC/15w composites, J. Compos. Mater., 40(2006), No. 12, p. 1117.

    Article  Google Scholar 

  31. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon Press, Oxford, 2004, p. 451.

    Book  Google Scholar 

Download references

Acknowledgement

This work is financially supported by the National Basic Research Program of China (973) (No. 2012CB619600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan-ting Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Ou-yang, Qb., Yao, L. et al. A study of interparticulate strain in a hot-extruded SiCp/2014 Al composite. Int J Miner Metall Mater 26, 523–529 (2019). https://doi.org/10.1007/s12613-019-1760-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1760-6

Keywords

Navigation