Skip to main content
Log in

Carbon deposition in porous nickel/yttria-stabilized zirconia anode under methane atmosphere

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

A commercial solid oxide fuel cell with a Ni/YSZ anode was characterized under a pure methane atmosphere. The amount of deposited carbon increased with an increase in temperature but decreased when the temperature exceeded 700°C. The reactivity of carbon decreased with increasing deposition temperature. Filamentous carbon was deposited from 400 to 600°C, whereas flake carbon was deposited at 700 and 800°C. With increasing temperature, the intensity ratio of the D band over the sum of the G and D bands was constant at the beginning and then decreased with the transformation of the carbon morphology. The crystallite size increased from 2.9 to 13 nm with increasing temperature. The results also indicated that the structure of the deposited carbon was better ordered with increasing deposition temperature. In comparison with pure Ni powders, the interaction between the YSZ substrate and Ni particles could not only modify the carbon deposition kinetics but also reduce the temperature effect on the structure and reactivity variation of carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.S. Hecht, G.K. Gupta, H.Y. Zhu, A.M. Dean, R.J. Kee, L. Maier, and O. Deutschmann, Methane reforming kinetics within a Ni-YSZ SOFC anode support, Appl. Catal. A, 295(2005), No. 1, p. 40.

    Article  CAS  Google Scholar 

  2. H. Sumi, Y.H. Lee, H. Muroyama, T. Matsui, and K. Eguchi, Comparison between internal steam and CO2 reforming of methane for Ni-YSZ and Ni-ScSZ SOFC anodes, J. Electrochem. Soc., 157(2010), No. 8, p. B1118.

    Article  CAS  Google Scholar 

  3. E.P. Murray, T. Tsai, and S.A. Barnett, A direct-methane fuel cell with a ceria-based anode, Nature, 400(1999), No. 6745, p. 649.

    Article  CAS  Google Scholar 

  4. S. Park, R. Craciun, J.M. Vohs, and R.J. Gorte, Direct oxidation of hydrocarbons in a solid oxide fuel cell: I. Methane oxidation, J. Electrochem. Soc., 146(1999), No. 10, p. 3603.

    Article  CAS  Google Scholar 

  5. S. Park, J.M. Vohs, and R.J. Gorte, Direct oxidation of hydrocarbons in a solid-oxide fuel cell, Nature, 404(2000), No. 6775, p. 265.

    Article  CAS  Google Scholar 

  6. T. Kim, S. Moon, and S.I. Hong, Internal carbon dioxide reforming by methane over Ni-YSZ-CeO2 catalyst electrode in electrochemical cell, Appl. Catal. A, 224(2002), No. 1–2, p. 111.

    Article  CAS  Google Scholar 

  7. I. Luisetto, S. Tuti, C. Battocchio, S. Lo Mastro, and A. Sodo, Ni/CeO2-Al2O3 catalysts for the dry reforming of methane: The effect of CeAlO3 content and nickel crystallite size on catalytic activity and coke resistance, Appl. Catal. A, 500(2015), p. 12.

    Article  CAS  Google Scholar 

  8. J. Macek, B. Novosel, and M. Marinšek, Ni-YSZ SOFC anodes—Minimization of carbon deposition, J. Eur. Ceram. Soc., 27(2007), No. 2–3, p. 487.

    Article  CAS  Google Scholar 

  9. T. Takeguchi, Y. Kani, T. Yano, R. Kikuchi, K. Eguchi, K. Tsujimoto, Y. Uchida, A. Ueno, K. Omoshiki, and M. Aizawa, Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets, J. Power Sources, 112(2002), No. 2, p. 588.

    Article  CAS  Google Scholar 

  10. H. Sumi, K. Ukai, Y. Mizutani, H. Mori, C.J. Wen, H. Takahashi, and O. Yamamoto, Performance of nickel-scandia-stabilized zirconia cermet anodes for SOFCs in 3% H2O-CH4, Solid State Ionics, 174(2004), No. 1–4, p. 151.

    Article  CAS  Google Scholar 

  11. K. Ke, A. Gunji, H. Mori, S. Tsuchida, H. Takahashi, K. Ukai, Y. Mizutani, H. Sumi, M. Yokoyama, and K. Waki, Effect of oxide on carbon deposition behavior of CH4 fuel on Ni/ScSZ cermet anode in high temperature SOFCs, Solid State Ionics, 177(2006), No. 5–6, p. 541.

    Article  CAS  Google Scholar 

  12. H. Takahashi, T. Takeguchi, N. Yamamoto, M. Matsuda, E. Kobayashi, and W. Ueda, Effect of interaction between Ni and YSZ on coke deposition during steam reforming of methane on Ni/YSZ anode catalysts for an IR-SOFC, J. Mol. Catal. A, 350(2011), No. 1–2, p. 69.

    Article  CAS  Google Scholar 

  13. T. Horita, K. Yamaji, T. Kato, N. Sakai, and H. Yokokawa, Design of metal/oxide interfaces for the direct introduction of hydrocarbons into SOFCs, J. Power Sources, 131(2004), No. 1, p. 299.

    Article  CAS  Google Scholar 

  14. J. Kubota, S. Hashimoto, T. Shindo, K. Yashiro, T. Matsui, K. Yamaji, H. Kishimoto, and T. Kawada, Self-modification of Ni metal surfaces with CeO2 to suppress carbon deposition at solid oxide fuel cell anodes, Fuel Cells, 17(2017), No. 3, p. 402.

    Article  CAS  Google Scholar 

  15. Z.Y. Chen, L.Z. Bian, L.J. Wang, Z.Y. Yu, H.L. Zhao, F.S. Li, and K.C. Chou, Topography, structure, and formation kinetic mechanism of carbon deposited onto nickel in the temperature range from 400 to 850°C, Int. J. Miner. Metall. Mater., 24(2017), No. 5, p. 574.

    Article  CAS  Google Scholar 

  16. H.S. Bengaard, J.K. Nørskov, J. Sehested, B.S. Clausen, L.P. Nielsen, A.M. Molenbroek, and J.R. Rostrup-Nielsen, Steam reforming and graphite formation on Ni catalysts, J. Catal., 209(2002), No. 2, p. 365.

    Article  CAS  Google Scholar 

  17. A. Oberlin, M. Endo, and T. Koyama, Filamentous growth of carbon through benzene decomposition, J. Cryst. Growth, 32(1976), No. 3, p. 335.

    Article  CAS  Google Scholar 

  18. Z.Y. Chen, L.J. Wang, Y.D. Gong, D. Tang, F.S. Li, and K.C. Chou, Effect of ozone on the performance of solid oxide fuel cell with Sm0.5Sr0.5CoO3 cathode, J. Power Sources, 255(2014), p. 59.

    Article  CAS  Google Scholar 

  19. Z. Cheng and M. Liu, Characterization of sulfur poisoning of Ni-YSZ anodes for solid oxide fuel cells using in situ Raman microspectroscopy, Solid State Ionics, 178(2007), No. 13–14, p. 925.

    Article  CAS  Google Scholar 

  20. F. Li and J.S. Lannin, Disorder induced Raman scattering of nanocrystalline carbon, Appl. Phys. Lett., 61(1992), No. 17, p. 2116.

    Article  CAS  Google Scholar 

  21. W.S. Bacsa, J.S. Lannin, D.L. Pappas, and J.J. Cuomo, Raman scattering of laser-deposited amorphous carbon, Phys. Rev. B, 47(1993), No. 16, p. 10931.

    Article  CAS  Google Scholar 

  22. A.L. Pinheiro, A.N. Pinheiro, A. Valentini, J.M. Filho, F.F. de Sousa, J.R. de Sousa, C.R. M. da Graça, P. Bargiela, and A.C. Oliveira, Analysis of coke deposition and study of the structural features of MAl2O4 catalysts for the dry reforming of methane, Catal. Commun., 11(2009), No. 1, p. 11.

    Article  CAS  Google Scholar 

  23. A.E. Galetti, M.F. Gomez, L.A. Arrúa, and M.C. Abello, Ni catalysts supported on modified ZnAl2O4 for ethanol steam reforming, Appl. Catal. A, 380(2010), No. 1–2, p. 40.

    Article  CAS  Google Scholar 

  24. H.F. Abbas and W.M.A.W. Daud, Hydrogen production by methane decomposition: A review, Int. J. Hydrogen Energy, 35(2010), No. 3, p. 1160.

    Article  CAS  Google Scholar 

  25. C.M. Finnerty, N.J. Coe, R.H. Cunningham, and R.M. Ormerod, Carbon formation on and deactivation of nickel-based/zirconia anodes in solid oxide fuel cells running on methane, Catal. Today, 46(1998), No. 2–3, p. 137.

    Article  CAS  Google Scholar 

  26. M. Inoue, K. Asai, Y. Nagayasu, K. Takane, S. Iwamoto, E. Yagasaki, and K. Ishii, Formation of multi-walled carbon nanotubes by Ni-catalyzed decomposition of methane at 600–750°C, Diamond Relat. Mater., 17(2008), No. 7–10, p. 1471.

    Article  CAS  Google Scholar 

  27. A.C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, 61(2000), No. 20, p. 14095.

    Article  CAS  Google Scholar 

  28. A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Pöschl, Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information, Carbon, 43(2005), No. 8, p. 1731.

    Article  CAS  Google Scholar 

  29. T. Jawhari, A. Roid, and J. Casado, Raman spectroscopic characterization of some commercially available carbon black materials, Carbon, 33(1995), No. 11, p. 1561.

    Article  CAS  Google Scholar 

  30. G.A. Zickler, B. Smarsly, N. Gierlinger, H. Peterlik, and O. Paris, A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diffraction and Raman spectroscopy, Carbon, 44(2006), No. 15, p. 3239.

    Article  CAS  Google Scholar 

  31. J.D. Herdman, B.C. Connelly, M.D. Smooke, M.B. Long, and J.H. Miller, A comparison of Raman signatures and laser-induced incandescence with direct numerical simulation of soot growth in non-premixed ethylene/air flames, Carbon, 49(2011), No. 15, p. 5298.

    Article  CAS  Google Scholar 

  32. F. Tuinstra and J.L. Koenig, Raman spectrum of graphite, J. Chem. Phys., 53(1970), No. 3, p. 1126.

    Article  CAS  Google Scholar 

  33. S. Kurita, A. Yoshimura, H. Kawamoto, T. Uchida, K. Kojima, M. Tachibana, P. Molina-Morales, and H. Nakai, Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition, J. Appl. Phys., 97(2005), No. 10, p. 104320.

    Article  CAS  Google Scholar 

  34. D.S. Knight and W.B. White, Characterization of diamond films by Raman spectroscopy, J. Mater. Res., 4(1989), No. 2, p. 385.

    Article  CAS  Google Scholar 

  35. A. Cuesta, P. Dhamelincourt, J. Laureyns, A. Martínez-Alonso, and J.M.D. Tascón, Raman microprobe studies on carbon materials, Carbon, 32(1994), No. 8, p. 1523.

    Article  CAS  Google Scholar 

  36. C.D. Sheng, Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity, Fuel, 86(2007), No. 15, p. 2316.

    Article  CAS  Google Scholar 

  37. Y. Wang, D.C. Alsmeyer, and R.L. McCreery, Raman spectroscopy of carbon materials: structural basis of observed spectra, Chem. Mater., 2(1990), No. 5, p. 557.

    Article  CAS  Google Scholar 

  38. R.C. Maher, V. Duboviks, G.J. Offer, M. Kishimoto, N.P. Brandon, and L.F. Cohen, Raman spectroscopy of solid oxide fuel cells: Technique overview and application to carbon deposition analysis, Fuel Cells, 13(2013), No. 4, p. 455.

    Article  CAS  Google Scholar 

  39. J. Kuhn and O. Kesler, Method for in situ carbon deposition measurement for solid oxide fuel cells, J. Power Sources, 246(2014), p. 430.

    Article  CAS  Google Scholar 

  40. C. Su, Y.Z. Wu, W. Wang, Y. Zheng, R. Ran, and Z.P. Shao, Assessment of nickel cermets and La0.8Sr0.2Sc0.2Mn0.8O3 as solid-oxide fuel cell anodes operating on carbon monoxide fuel, J. Power Sources, 195(2010), No. 5, p. 1333.

    Article  CAS  Google Scholar 

  41. T. Skalar, E. Jelen, B. Novosel, and M. Marinšek, Oxidation of carbon deposits on anode material Ni-YSZ in solid oxide fuel cells, J. Therm. Anal. Calorim., 127(2017), No. 1, p. 265.

    Article  CAS  Google Scholar 

  42. Y. Kim, J.H. Kim, J. Bae, C.W. Yoon, and S.W. Nam, In situ analyses of carbon dissolution into Ni-YSZ anode materials, J. Phys. Chem. C, 116(2012), No. 24, p. 13281.

    Article  CAS  Google Scholar 

  43. N. Muradov, F. Smith, and A. T-Raissi, Catalytic activity of carbons for methane decomposition reaction, Catal. Today, 102–103(2005), p. 225.

    Article  CAS  Google Scholar 

  44. J.J. Cuomo, J.P. Doyle, J. Bruley, and J.C. Liu, Sputter deposition of dense diamond-like carbon films at low temperature, Appl. Phys. Lett., 58(1991), No. 5, p. 466.

    Article  CAS  Google Scholar 

  45. T. Sasaki, K. Matsunaga, H. Ohta, H. Hosono, T. Yamamoto, and Y. Ikuhara, Atomic and electronic structures of Ni/YSZ (111) interface, Mater. Trans., 45(2004), No. 7, p. 2137.

    Article  CAS  Google Scholar 

  46. Y.F. Dong, S.J. Wang, J.W. Chai, Y.P. Feng, and C.H.A. Huan, Impact of interface structure on Schottky-barrier height for Ni/ZrO2 (001) interfaces, Appl. Phys. Lett., 86(2005), No. 13, p. 132103.

    Article  CAS  Google Scholar 

  47. S. Kasamatsu, T. Tada, and S. Watanabe, First principles study of oxygen vacancies near nickel/zirconia interface, J. Surf. Sci. Nanotechnol., 8(2010), p. 93.

    Article  CAS  Google Scholar 

  48. A. Feinberg and C.H. Perry, Structural disorder and phase transitions in ZrO2-Y2O3 system, J. Phys. Chem. Solids, 42(1981), No. 6, p. 513.

    Article  CAS  Google Scholar 

  49. C. Li and M.J. Li, UV Raman spectroscopic study on the phase transformation of ZrO2, Y2O3-ZrO2 and SO4 2-/ZrO2, J. Raman Spectrosc., 33(2002), No. 5, p. 301.

    Article  CAS  Google Scholar 

  50. S. Karlin and P. Colomban, Phase diagram, short-range structure, and amorphous phases in the ZrO2-GeO2(-H2O) system, J. Am. Ceram. Soc., 82(1999), No. 3, p. 735.

    Article  CAS  Google Scholar 

  51. D.W. Liu, C.H. Perry, and R.P. Ingel, Infrared spectra in nonstoichiometric yttria-stabilized zirconia mixed crystals at elevated temperatures, J. Appl. Phys., 64(1988), No. 3, p. 1413.

    Article  CAS  Google Scholar 

  52. D.J. Kim, H.J. Jung, and I.S. Yang, Raman spectroscopy of tetragonal zirconia solid solutions, J. Am. Ceram. Soc., 76(1993), No. 8, p. 2106.

    Article  CAS  Google Scholar 

  53. J. Carrasco, L. Barrio, P. Liu, J.A. Rodriguez, and M.V. Ganduglia-Pirovano, Theoretical studies of the adsorption of CO and C on Ni(111) and Ni/CeO2(111): Evidence of a strong metal-support interaction, J. Phys. Chem. C, 117(2013), No. 16, p. 8241.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Program on Key Basic Research Project of China (No. 2012CB215405). We are also immensely grateful to the kind help of Dr. Prakash Venkatesan from Delft University of Technology for his comments on the draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-jun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Zy., Wang, Lj., Du, Xj. et al. Carbon deposition in porous nickel/yttria-stabilized zirconia anode under methane atmosphere. Int J Miner Metall Mater 26, 350–359 (2019). https://doi.org/10.1007/s12613-019-1744-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1744-6

Keywords

Navigation