Skip to main content
Log in

Austenite grain growth of medium-carbon alloy steel with aluminum additions during heating process

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

In this study, the effects of heating temperature (850–1100°C) and holding time (30–150 min) on the grain growth behavior of austenite in medium-carbon alloy steel were investigated by conducting experiments. The abnormal grain growth and mixed grain structure phenomenon are explained using an equilibrium precipitation phase diagram calculated by Thermo-Calc software package. The AlN particles were observed by field-emission scanning electron microscopy (FESEM), and the amount of AlN precipitations was detected by electron probe microanalysis (EPMA). Based on the research results, it was found that the average grain size of austenite in the test steel increased continuously with the increase of temperature and holding time. Furthermore, the abnormal growth of austenite occurred in the test steel at 950°C, and the heating temperature affected the austenite grain size more significantly. In addition, the decline in the amount of AlN second-phase particle in the test steel, which weakened the “pinning” effect on austenite grain boundaries, resulted in abnormal growth and the development of mixed austenite grain structures. The prediction model for describing the austenite grain growth of medium-carbon alloy steel during heating was established by regression analysis of the experimental data, and the model was verified to be highly accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Maalekian, R. Radis, M. Militzer, and A. Moreau, and W.J. Poole, In situ measurement and modelling of austenite grain growth in a Ti/Nb microalloyed steel, Acta Mater., 60(2012), No. 3, p. 1015.

    Article  Google Scholar 

  2. J. Fernández, S. Illescas, and J.M. Guilemany, Effect of microalloying elements on the austenitic grain growth in a low carbon HSLA steel, Mater. Lett., 61(2007), No. 11–12, p. 2389.

    Article  Google Scholar 

  3. J. Moon, J. Lee, and C. Lee, Prediction for the austenite grain size in the presence of growing particles in the weld HAZ of Ti-microalloyed steel, Mater. Sci. Eng. A, 459(2007), No. 1–2, p. 40.

    Article  Google Scholar 

  4. R. Dippenaar, C. Bernhard, S. Schider, and G. Wieser, Austenite grain growth and the surface quality of continuously cast steel, Metall. Mater. Trans. B, 45(2014), No. 2, p. 409.

    Article  Google Scholar 

  5. J.J. Lewandowski and A.W. Thompson, Effects of the prior austenite grain size on the ductility of fully pearlitic eutectoid steel, Metall. Trans. A, 17(1986), No. 3, p. 461.

    Article  Google Scholar 

  6. Y. Prawoto, N. Jasmawati, and K. Sumeru, Effect of prior austenite grain size on the morphology and mechanical properties of martensite in medium carbon steel, J. Mater. Sci. Technol., 28(2012), No. 5, p. 461.

    Article  Google Scholar 

  7. H. Zhao and E.J. Palmiere, Erratum to: Effect of austenite deformation on the microstructure evolution and grain refinement under accelerated cooling conditions, Metall. Mater. Trans. A, 48(2017), No. 10, p. 5164.

    Article  Google Scholar 

  8. J. Han, A.K. da Silva, D. Ponge, D. Raabe, S.M. Lee, Y.K. Lee, S.I. Lee, and B. Hwang, The effects of prior austenite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel, Acta Mater., 122(2017), p. 199.

    Article  Google Scholar 

  9. X.P. Ma, B. Langelier, B. Gault, and S. Subramanian, Effect of Nb addition to Ti-bearing super martensitic stainless steel on control of austenite grain size and strengthening, Metall. Mater. Trans. A, 48(2017), No. 5, p. 2460.

    Article  Google Scholar 

  10. S.S. Zhang, M.Q. Li, Y.G. Liu, J. Luo, and T.Q. Liu, The growth behavior of austenite grain in the heating process of 300M steel, Mater. Sci. Eng., A, 528(2011), No. 15, p. 4967.

    Article  Google Scholar 

  11. X.G. Zhang, K. Matsuura, and M. Ohno, Abnormal grain growth in austenite structure reversely transformed from ferrite/ pearlite-banded structure, Metall. Mater. Trans. A, 45(2014), No. 10, p. 4623.

    Article  Google Scholar 

  12. O. Flores and L. Martinez, Abnormal grain growth of austenite in a V-Nb microalloyed steel, J. Mater. Sci., 32(1997), No. 22, p. 5985.

    Article  Google Scholar 

  13. L.J. Cuddy and J.C. Raley, Austenite grain coarsening in microalloyed steels, Metall. Trans. A, 14(1983), No. 10, p. 1989.

    Article  Google Scholar 

  14. C.M. Enloe, K.O. Findley, and J.G. Speer, Austenite grain growth and precipitate evolution in a carburizing steel with combined niobium and molybdenum additions, Metall. Mater. Trans. A, 46(2015), No. 11, p. 5308.

    Article  Google Scholar 

  15. M. Militzer, E.B. Hawbolt, T.R. Meadowcroft, and A. Giumelli, Austenite grain growth kinetics in Al-killed plain carbon steels, Metall. Mater. Trans. A, 27(1996), No. 11, p. 3399.

    Article  Google Scholar 

  16. H. Pous-Romero, I. Lonardelli, D. Cogswell, and H.K.D.H. Bhadeshia, Austenite grain growth in a nuclear pressure vessel steel, Mater. Sci. Eng. A, 567(2013), p. 72.

    Article  Google Scholar 

  17. L. Zhang and T. Kannengiesser, Austenite grain growth and microstructure control in simulated heat affected zones of microalloyed HSLA steel, Mater. Sci. Eng. A, 613(2014), p. 326.

    Article  Google Scholar 

  18. V.I. Savran, S.E. Offerman, and J. Sietsma, Austenite nucleation and growth observed on the level of individual grains by three-dimensional X-Ray diffraction microscopy, Metall. Mater. Trans. A, 41(2010), No. 3, p. 583.

    Article  Google Scholar 

  19. S.F. Tao, F.M. Wang, G.L. Sun, Z.B. Yang, and C.R. Li, DICTRA simulation of holding time dependence of NbC size and experimental study of effect of NbC on austenite grain growth, Metall. Mater. Trans. A, 46(2015), No. 8, p. 3670.

    Article  Google Scholar 

  20. A. Ray, S.K. Ray, and S.R. Mediratta, Effect of carbides on the austenite grain growth characteristics in 1Cr–1C and 6Cr–1Mo–1C steels, J. Mater. Sci., 25(1990), No. 12, p. 5070.

    Article  Google Scholar 

  21. K. Zhu and Z.G. Yang, Effect of magnesium on the austenite grain growth of the heat-affected zone in low-carbon high-strength steels, Metall. Mater. Trans. A, 42(2011), No. 8, p. 2207.

    Article  Google Scholar 

  22. A.M. Elwazri, S. Yue, and P. Wanjara, Effect of prior-austenite grain size and transformation temperature on nodule size of microalloyed hypereutectoid steels, Metall. Mater. Trans. A, 36(2005), No. 9, p. 2297.

    Article  Google Scholar 

  23. M.A. Bepari, Effects of second-phase particles on coarsening of austenite in 0.15 Pct carbon steels, Metall. Trans. A, 20(1989), No. 1, p. 13.

    Article  Google Scholar 

  24. S. Sarkar, A. Moreau, M. Militzer, and W.J. Poole, Evolution of austenite recrystallization and grain growth using laser ultrasonics, Metall. Mater. Trans. A, 39(2008), No. 4, p. 897.

    Article  Google Scholar 

  25. S. Maropoulos, S. Karagiannis, and N Ridley, Factors affecting prior austenite grain size in low alloy steel, J. Mater. Sci., 42(2007), No. 4, p. 1309.

    Article  Google Scholar 

  26. P.A. Manohar, D.P. Dunne, T. Chandra, and C.R. Killmore, Grain growth predictions in microalloyed steels, ISIJ Int., 36(1996), No. 2, p. 194.

    Article  Google Scholar 

  27. Q.Y. Sha and Z.Q. Sun, Grain growth behavior of coarse-grained austenite in a Nb-V-Ti microalloyed steel, Mater. Sci. Eng. A, 523(2009), No. 1–2, p. 77.

    Article  Google Scholar 

  28. X.L. Wan, K.M. Wu, G. Huang, R. Wei, and L. Cheng, In situ observation of austenite grain growth behavior in the simulated coarse-grained heat-affected zone of Ti-microalloyed steels, Int. J. Miner. Metall. Mater., 21(2014), No. 9, p. 878.

    Article  Google Scholar 

  29. Y. Gu, P. Tian, X. Wang, X.L. Han, B. Liao, and F.R. Xiao, Non-isothermal prior austenite grain growth of a high-Nb X100 pipeline steel during a simulated welding heat cycle process, Mater. Des., 89(2016), p. 589.

    Article  Google Scholar 

  30. Ö.N. Dogan, G.M. Michal, and H.W. Kwon, Pinning of austenite grain boundaries by AIN precipitates and abnormal grain growth, Metall. Trans. A, 23(1992), No. 8, p. 2121.

    Article  Google Scholar 

  31. S.J. Lee and Y.K. Lee, Prediction of austenite grain growth during austenitization of low alloy steels, Mater. Des., 29(2008), No. 9, p. 1840.

    Article  Google Scholar 

  32. Y.W. Xu, D. Tang, Y. Song, and X.G. Pan, Prediction model for the austenite grain growth in a hot rolled dual phase steel, Mater. Des., 36(2012), p. 275.

    Article  Google Scholar 

  33. K. Matsuura and Y. Itoh, Analysis of the effect of grain size distribution on grain growth by computer simulation, ISIJ Int., 31(1991), No. 4, p. 366.

    Article  Google Scholar 

  34. K. Pawlak, B. Bialobrzeska, and L. Konat, The influence of austenitizing temperature on prior austenite grain size and resistance to abrasion wear of selected low-alloy boron steel, Arch. Civ. Mech. Eng., 16(2016), No. 4, p. 913.

    Article  Google Scholar 

  35. Y. Vertyagina, M. Mahfouf, and X. Xu, 3D modelling of ferrite and austenite grain coarsening using real-valued cellular automata based on transition function, J. Mater. Sci., 48(2013), No. 16, p. 5517.

    Article  Google Scholar 

  36. Y. Vertyagina and M. Mahfouf, A 3D cellular automata model of the abnormal grain growth in austenite, J. Mater. Sci., 50(2015), No. 2, p. 745.

    Article  Google Scholar 

  37. P.A. Beck, J.C. Kremer, and L.J. Demer, Grain growth in high purity aluminum, Phys. Rev., 71(1947), No. 8, p. 555.

    Article  Google Scholar 

  38. M. Hillert, On the theory of normal and abnormal grain growth, Acta Metall., 13(1965), No. 3, p. 227.

    Article  Google Scholar 

  39. E. Anelli, Application of mathematical modelling to hot rolling and controlled cooling of wire rods and bars, ISIJ Int., 32(1992), No. 3, p. 440.

    Article  Google Scholar 

  40. C.M. Sellars and J.A. Whiteman, Recrystallization and grain growth in hot rolling, Met. Sci., 13(1979), No. 3–4, p. 187.

    Article  Google Scholar 

  41. Y.X. Zhang, H.O. Zhang, G.L. Wang, and S.D. Hu, Application of mathematical model for microstructure and mechanical property of hot rolled wire rods, Appl. Math. Modell., 33(2009), No. 3, p. 1259.

    Article  Google Scholar 

  42. Y. Fu and H. Yu, Application of mathematical modeling in two-stage rolling of hot rolled wire rods, J. Mater. Process. Technol., 214(2014), No. 9, p. 1962.

    Article  Google Scholar 

  43. S. Uhm, J. Moon, C. Lee, J. Yoon, and B. Lee, Prediction model for the austenite grain size in the coarse grained heat affected zone of Fe-C-Mn steels: considering the effect of initial grain size on isothermal growth behavior, ISIJ Int., 44(2004), No. 7, p. 1230.

    Article  Google Scholar 

  44. G.X. Jin, F.M. Wang, J. Fu, K.F. Li, and C.R. Li, Formation of martensite in 82B high carbon steel wire rod, Trans. Mater. Heat Treat., 34(2013), No. 6, p. 62.

    Google Scholar 

  45. S.F. Tao, F.M. Wang, Q.M. Yu, L.F. Sun, and G.Q. Chai, Effect of austenitizing temperature and holding time on austenite grain size of EQ70 steel, Trans. Mater. Heat Treat., 34(2013), No. 11, p. 42.

    Google Scholar 

  46. D.F. Hu and M. Chen, Practice of producing ML40Cr cold heading wire rod by process of 30 t BOF-billet continuous casting, J. Mater. Metall., 10(2011), No. 3, p. 164.

    Google Scholar 

  47. L.Z. Wu, J. Chen, and H.B. Zhang, Dynamic recrystallization of austenite and grain refinement in 40Cr Steel, J. Shanghai Jiaotong Univ., 42(2008), No. 5, p. 786.

    Google Scholar 

  48. R.T. Xiao, H. Yu, and P. Zhou, Austenite grain growth behavior of Q1030 high strength welded steel, Int. J. Miner. Metall. Mater., 19(2012), No. 8, p. 711.

    Article  Google Scholar 

  49. S.W. Du, Y.T. Li, and Y. Zheng, Kinetics of austenite grain growth during heating and its influence on hot deformation of LZ50 steel, J. Mater. Eng. Perform., 25(2016), No. 7, p. 2661.

    Article  Google Scholar 

  50. B. Jiang, M. Wu, H. Sun, Z.L. Wang, Z.G. Zhao, and Y.Z. Liu, Prediction model of austenite growth and the role of MnS inclusions in non-quenched and tempered steel, Met. Mater. Int., 24(2018), No. 1, p. 15.

    Article  Google Scholar 

  51. F. Liu, G. Xu, Y.L. Zhang, H.J. Hu, L.X. Zhou, and Z.L. Xue, In situ observations of austenite grain growth in Fe-C-Mn-Si super bainitic steel, Int. J. Miner. Metall. Mater., 20(2013), No. 11, p. 1060.

    Article  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (No. 51774037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-ping Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Zy., Bao, Yp., Wang, M. et al. Austenite grain growth of medium-carbon alloy steel with aluminum additions during heating process. Int J Miner Metall Mater 26, 282–290 (2019). https://doi.org/10.1007/s12613-019-1736-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1736-6

Keywords

Navigation