Development of N-doped carbons from zeolite-templating route as potential electrode materials for symmetric supercapacitors

  • Meng Ren
  • Cheng-yun Zhang
  • Yue-lin Wang
  • Jin-jun CaiEmail author


N-doped carbons were fabricated from zeolite-templated carbon via modification with melamine and mild KOH activation. The N-doping treatment and KOH activation slightly lowered the surface areas of pristine zeolite-templated carbon; nonetheless, N-doped carbons with a lower surface area exhibited much higher capacitance and cycling stability as fabricated into symmetric supercapacitor. Significantly, N-doped carbon obtained at 700°C showed a capacitance of 45.7 F/g at 0.1 A/g and 42.0 F/g at 10 A/g for the fabricated supercapacitor with 6 M KOH electrolyte, with 92% retention of initial capacitance as current density increased up to 100-fold. This performance was attributed to the dual contribution of electric double-layer capacitance and pseudo-capacitance. The assembled supercapacitor also exhibited excellent cycling stability, with 91% capacitance retention at 10 A/g after 10000 cycles.


zeolite template porous carbon nitrogen-doping chemical activation supercapacitor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (No. 21506184), Hunan 2011 Collaborative Center of Chemical Technologies for Environmental Benignity & Efficient Resource Utilization, and State Key Laboratory of Powder Metallurgy of Central South University. Dr. Cai also give his special thanks to Prof. Titirici worked at Queen Mary University of London for her kind help on the measurements and discussions for the electrochemical performance.


  1. [1]
    D.S. Su and R. Schloögl, Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications, ChemSusChem, 3(2010), No. 2, p. 136.CrossRefGoogle Scholar
  2. [2]
    G. Wang, L. Zhang, and J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev., 41(2012), No. 2, p. 797.CrossRefGoogle Scholar
  3. [3]
    A.P. Periasamy, R. Ravindranath, P. Roy, W.P. Wu, H.T. Chang, P.V. Veerakkumar, and S.B. Liu, Carbon–boron core–shell microspheres for the oxygen reduction reaction, J. Mater. Chem. A, 4(2016), No. 33, p. 12987.CrossRefGoogle Scholar
  4. [4]
    D. Hulicova–Jurcakova, M. Kodama, S. Shiraishi, H. Hatori, Z.H. Zhu, and G.Q. Lu, Nitrogen–enriched nonporous carbon electrodes with extraordinary supercapacitance, Adv. Funct. Mater., 19(2009), No. 11, p. 1800.CrossRefGoogle Scholar
  5. [5]
    T. Cordero–Lanzac, J.M. Rosas, F.J. García–Mateos, J.J. Ternero–Hidalgo, J. Palomo, J. Rodríguez–Mirasol, and T. Cordero, Role of different nitrogen functionalities on the electrochemical performance of activated carbons, Carbon, 126(2018), p. 65.CrossRefGoogle Scholar
  6. [6]
    L.T. Hu, J.X. Hou, Y. Ma, H.Q. Li, and T.Y. Zhai, Multi–heteroatom self–doped porous carbon derived from swim bladders for large capacitance supercapacitors, J. Mater. Chem. A, 4(2016), No. 39, p. 15006.CrossRefGoogle Scholar
  7. [7]
    L. Wan, E. Shamsaei, C.D. Easton, D.B. Yu, Y. Liang, X.F. Chen, Z. Abbasi, A. Akbari, X.W. Zhang, and H.T. Wang, ZIF–8 derived nitrogen–doped porous carbon/carbon nanotube composite for high–performance supercapacitor, Carbon, 121(2017), p. 330.CrossRefGoogle Scholar
  8. [8]
    Y. Korenblit, M. Rose, E. Kockrick, L. Borchardt, A.V. Kvit, S. Kaskel, and G. Yushin, High–rate electrochemical capacitors based on ordered mesoporous silicon carbide–derived carbon, ACS Nano, 4(2010), No. 3, p. 1337.CrossRefGoogle Scholar
  9. [9]
    M. Zhou, F. Pu, Z. Wang, and S.Y. Guan, Nitrogen–doped porous carbons through KOH activation with superior performance in supercapacitors, Carbon, 68(2014), p. 185.CrossRefGoogle Scholar
  10. [10]
    B. Xu, S.S. Hou, F.L. Zhang, G.P. Cao, M. Chu, and Y.S. Yang, Nitrogen–doped mesoporous carbon derived from biopolymer as electrode material for supercapacitors, J. Electroanal. Chem., 712(2014), p. 146.CrossRefGoogle Scholar
  11. [11]
    Z.X. Ma, T. Kyotani, Z. Liu, O. Terasaki, and A. Tomita, Very high surface area microporous carbon with a three–dimensional nano–array structure synthesis and its mo lecular structure, Chem. Mater., 13(2001), No. 12, p. 4413.CrossRefGoogle Scholar
  12. [12]
    C.O. Ania, V. Khomenko, E. Raymundo–Piñero, J.B. Parra, and F. Béguin, The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template, Adv. Funct. Mater., 17(2007), No. 11, p. 1828.CrossRefGoogle Scholar
  13. [13]
    J. Zhou, W. Li, Z.S. Zhang, X.Z. Wu, W. Xing, and S.P. Zhuo, Effect of cation nature of zeolite on carbon replicas and their electrochemical capacitance, Electrochim. Acta, 89(2013), p. 763.CrossRefGoogle Scholar
  14. [14]
    W. Li, J. Zhou, W. Xing, S.P. Zhuo, and Y.M. Lv, Preparation of microporous carbon using a zeolite HY template and its capacitive performance, Acta Phys. Chim. Sin., 27(2011), No. 3, p. 620.Google Scholar
  15. [15]
    S. Leyva–García, K. Nueangnoraj, D. Lozano–Castelló, H. Nishihara, T. Kyotani, E. Morallón, and D. Cazorla–Amorós, Characterization of a zeolite–templated carbon by electrochemical quartz crystal microbalance and in situ Raman spectroscopy, Carbon, 89(2015), p. 63.CrossRefGoogle Scholar
  16. [16]
    M.J. Mostazo–López, R. Ruiz–Rosas, A. Castro–Muñiz, H. Nishihara, T. Kyotani, E. Morallón, and D. Cazorla–Amorós, Ultraporous nitrogen–doped zeolite–templated carbon for high power density aqueous–based supercapacitors, Carbon, 129(2018), p. 510.CrossRefGoogle Scholar
  17. [17]
    N.P. Stadie, S.T. Wang, K.V. Kravchyk, and M.V. Kovalenko, Zeolite–templated carbon as an ordered microporous electrode for aluminum batteries, ACS Nano, 11(2017), No. 2, p. 1911.CrossRefGoogle Scholar
  18. [18]
    K. Nueangnoraj, H. Nishihara, T. Ishii, N. Yamamoto, H. Itoi, R. Berenguer, R. Ruiz–Rosas, D. Cazorla–Amorós, E. Morallón, M. Ito, and T. Kyotani, Pseudocapacitance of zeolite–templated carbon in organic electrolytes, Energy Storage Mater., 1(2015), p. 35.CrossRefGoogle Scholar
  19. [19]
    H. Nishihara, H. Itoi, T. Kogure, P.X. Hou, H. Touhara, F. Okino, and T. Kyotani, Investigation of the ion storage/transfer behavior in an electrical double–layer capacitor by using ordered microporous carbons as model materials, Chem. Eur. J., 15(2009), No. 21, p. 5355.CrossRefGoogle Scholar
  20. [20]
    H. Xu, Q.M. Gao, H.L. Guo, and H.L. Wang, Hierarchical porous carbon obtained using the template of NaOH–treated zeolite β and its high performance as supercapacitor, Microporous Mesoporous Mater., 133(2010), No. 1–3, p. 106.CrossRefGoogle Scholar
  21. [21]
    X. Huang, Q. Wang, X.Y. Chen, and Z.J. Zhang, N–doped nanoporous carbons for the supercapacitor application by the template carbonization of glucose: the systematic comparison of different nitridation agents, J. Electroanal. Chem., 748(2015), p. 23.CrossRefGoogle Scholar
  22. [22]
    W.W. Gao, H. Huang, H.Y. Shi, X. Feng, and W.B. Song, Nitrogen–rich graphene from small molecules as high performance anode material, Nanotechnology, 25(2014), No. 41, art. No. 415402.Google Scholar
  23. [23]
    J.J. Cai, L.J. Li, X.X. Lv, C.P. Yang, and X.B. Zhao, Large surface area ordered porous carbons via nanocasting zeolite 10X and high performance for hydrogen storage application, ACS Appl. Mater. Interfaces, 6(2014), No. 1, p. 167.CrossRefGoogle Scholar
  24. [24]
    Z.X. Ma, T. Kyotani, and A. Tomita, Synthesis methods for preparing microporous carbons with a structural regularity of zeolite Y, Carbon, 40 (2002), No. 13, p. 2367.Google Scholar
  25. [25]
    M. Wahid, G. Parte, D. Phase, and S. Ogale, Yogurt: a novel precursor for heavily nitrogen doped supercapacitor carbon, J. Mater. Chem. A, 3(2015), No. 3, p. 1208.CrossRefGoogle Scholar
  26. [26]
    T.T. Liu, E.H. Liu, R. Ding, Z.Y. Luo, T.T. Hu, and Z.P. Li, Preparation and supercapacitive performance of clew–like porous nanocarbons derived from sucrose by catalytic graphitization, Electrochim. Acta, 173(2015), p. 50.CrossRefGoogle Scholar
  27. [27]
    S. Zhang, K. Tian, B.H. Cheng, and H. Jiang, Preparation of N–doped supercapacitor materials by integrated salt templating and silicon hard templating by pyrolysis of biomass wastes, ACS Sustainable Chem. Eng., 5(2017), No. 8, p. 6682.CrossRefGoogle Scholar
  28. [28]
    H.M. Wei, H.J. Chen, N. Fu, J. Chen, G.X. Lan, W. Qian, Y.P. Liu, H.L. Lin, and S. Han, Excellent electrochemical properties and large CO2 capture of nitrogen–doped activated porous carbon synthesised from waste longan shells, Electrochim. Acta, 231(2017), p. 403.CrossRefGoogle Scholar
  29. [29]
    K. Nueangnoraj, H. Nishihara, K. Imai, H. Itoi, T. Ishii, M. Kiguchi, Y. Sato, M. Terauchi, and T. Kyotani, Formation of crosslinked–fullerene–like framework as negative replica of zeolite Y, Carbon, 62(2013), p. 455.CrossRefGoogle Scholar
  30. [30]
    B.J. Zhu, B. Liu, C. Qu, H. Zhang, W.H. Guo, Z.B. Liang, F. Chen, and R.Q. Zou, Tailoring biomass–derived carbon for high–performance supercapacitors from controllably cultivated algae microspheres, J. Mater. Chem. A, 6(2018), No. 4, No. p. 1523.Google Scholar
  31. [31]
    J.S. Moon, H. Kim, D.C. Lee, J.T. Lee, and G. Yushin, Increasing capacitance of zeolite–templated carbons in electric double layer capacitors, J. Electrochem. Soc., 162(2015), No. 5, p. A5070.Google Scholar
  32. [32]
    W.T. Huang, H. Zhang, Y.Q. Huang, W.K. Wang, and S.C. Wei, Hierarchical porous carbon obtained from animal bone and evaluation in electric double–layer capacitors, Carbon, 49(2011), No. 3, p. 838.CrossRefGoogle Scholar
  33. [33]
    Z.W. Tian, M. Xiang, J.C. Zhou, L.Q. Hu, and J.J. Cai, Nitrogen and oxygen–doped hierarchical porous carbons from algae biomass: direct carbonization and excellent electrochemical properties, Electrochim. Acta, 211(2016), p. 225.CrossRefGoogle Scholar
  34. [34]
    F.B. Su, C.K. Poh, J.S. Chen, G.W. Xu, D. Wang, Q. Li, J.Y. Lin, and X.W. Lou, Nitrogen–containing microporous carbon nanospheres with improved capacitive properties, Energy Environ. Sci., 4(2011), No. 3, p. 717.CrossRefGoogle Scholar
  35. [35]
    L. Sun, C.L. Wang, Y. Zhou, Q. Zhao, X. Zhang, and J.S. Qiu, Activated nitrogen–doped carbons from polyvinyl chloride for high–performance electrochemical capacitors, J. Solid State Electrochem., 18(2014), No. 1, p. 49.CrossRefGoogle Scholar
  36. [36]
    W.J. Si, J. Zhou, S.M. Zhang, S.J. Li, W. Xing, and S.P. Zhuo, Tunable N–doped or dual N, S–doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications, Electrochim. Acta, 107(2013), p. 397.CrossRefGoogle Scholar
  37. [37]
    X.X. Wu, Z.W. Tian, L.Q. Hu, S. Huang, and J.J. Cai, Macroalgae–derived nitrogen–doped hierarchical porous carbons with high performance for H2 storage and supercapacitors, RSC Adv., 7(2017), No. 52, p. 32795.CrossRefGoogle Scholar
  38. [38]
    M. Ren, Z.Y. Jia, Z.W. Tian, D. López, J.J. Cai, M.M. Titirici, and A.B. Jorge, High performance N–doped carbon electrodes obtained via hydrothermal carbonization of macroalgae for supercapacitor applications, ChemElectroChem, 5(2018), No. 18, p. 2686.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Meng Ren
    • 1
    • 2
  • Cheng-yun Zhang
    • 1
  • Yue-lin Wang
    • 1
  • Jin-jun Cai
    • 1
    • 3
    Email author
  1. 1.Hunan Key Laboratory of Environment Friendly Chemical Process Technology, School of Chemical EngineeringXiangtan UniversityXiangtanChina
  2. 2.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaChina
  3. 3.School of Engineering Materials & ScienceQueen Mary University of LondonLondonUK

Personalised recommendations