Skip to main content
Log in

Effect of melting temperature on microstructural evolutions, behavior and corrosion morphology of Hadfield austenitic manganese steel in the casting process

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

In this study, the effect of melting temperature on the microstructural evolutions, behavior, and corrosion morphology of Hadfield steel in the casting process is investigated. The mold was prepared by the sodium silicate/CO2 method, using a blind riser, and then the desired molten steel was obtained using a coreless induction furnace. The casting was performed at melting temperatures of 1350, 1400, 1450, and 1500°C, and the cast blocks were immediately quenched in water. Optical microscopy was used to analyze the microstructure, and scanning electron microscopy (SEM) and X-ray diffractrometry (XRD) were used to analyze the corrosion morphology and phase formation in the microstructure, respectively. The corrosion behavior of the samples was analyzed using a potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) in 3.5wt% NaCl. The optical microscopy observations and XRD patterns show that the increase in melting temperature led to a decrease of carbides and an increase in the austenite grain size in the Hadfield steel microstructure. The corrosion tests results show that with increasing melting temperature in the casting process, Hadfield steel shows a higher corrosion resistance. The SEM images of the corrosion morphologies show that the reduction of melting temperature in the Hadfield steel casting process induced micro-galvanic corrosion conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ma, C. Huang, K. Dolman, X.H. Tang, J.J. Yang, Z. Shi, and Z.S. Liu, A method to calculate the bulk hardness of metal matrix composite using Hadfield steel reinforced with niobium carbide particles as an example, Mech. Mater., 112(2017), p. 154.

    Article  Google Scholar 

  2. C. Chen, X.Y. Feng, B. Lv, Z.N. Yang, and F.C. Zhang, A study on aging carbide precipitation behavior of hadfield steel by dynamic elastic modulus, Mater. Sci. Eng. A, 677(2016), p. 446.

    Article  Google Scholar 

  3. D.V. Lychagin, A.V. Filippov, O.S. Novitskaia, Y.I. Chumlyakov, E.A. Kolubaev, and O.V. Sizova, Friction–induced slip band relief of–Hadfield steel single crystal oriented for multiple slip deformation, Wear, 374(2017), p. 5.

    Article  Google Scholar 

  4. C. Chen, F.C. Zhang, F. Wang, H. Liu, and B.D. Yu, Effect of N+Cr alloying on the microstructures and tensile properties of Hadfield steel, Mater. Sci. Eng. A, 679(2017), p. 95.

    Article  Google Scholar 

  5. S.F. Gnyusov, V.P. Rotshtein, A.E. Mayer, E.G. Astafurova, V.V. Rostov, A.V. Gunin, and G.G. Maier, Comparative study of shock–wave hardening and substructure evolution of 304L and Hadfield steels irradiated with a nanosecond relativistic high–current electron beam, J. Alloys Compd., 714(2017), p. 232.

    Article  Google Scholar 

  6. J.T. Horng and K.T. Chiang, A grey and fuzzy algorithms integrated approach to the optimization of turning Hadfield steel with Al2O3/TiC mixed ceramic tool, J. Mater. Process. Technol., 207(2008), No. 1–3, p. 89.

    Article  Google Scholar 

  7. I. Mejía, A.E. Salas–Reyes, J. Calvo, and J.M. Cabrera, Effect of Ti and B microadditions on the hot ductility behavior of a high–Mn austenitic Fe−23Mn−1.5Al−1.3Si−0.5C TWIP steel, Mater. Sci. Eng. A, 648(2015), p. 311.

    Article  Google Scholar 

  8. D. Siafakas, T. Matsushita, Å. Lauenstein, S. Ekero, and A.E.W. Jarfors, A particle population analysis in Ti–and Al–deoxidized Hadfield steels, Int. J. Cast Met. Res., 31(2018), No. 3, p. 125.

    Article  Google Scholar 

  9. A.K. Srivastava and K. Das, In–situ synthesis and characterization of TiC–reinforced Hadfield manganese austenitic steel matrix composite, ISIJ Int., 49(2009), No. 9, p. 1372.

    Article  Google Scholar 

  10. A.K. Srivastava, K. Das, and S.K. Toor, Corrosion behaviour of TiC–reinforced Hadfield manganese austenitic steel matrix in–situ composites, Open J. Met. 5(2015), No. 2, p. 11.

  11. X.Y. Feng, F.C. Zhang, Z.N. Yang, and M. Zhang, Wear behaviour of nanocrystallised Hadfield steel, Wear, 305(2013), No. 1–2, p. 299.

    Article  Google Scholar 

  12. G.S. Zhang, J.D. Xing, and Y.M. Gao, Impact wear resistance of WC/Hadfield steel composite and its interfacial characteristics. Wear, 260(2006), No. 7–8, p. 728.

    Article  Google Scholar 

  13. W.L. Yan, L. Fang, K. Sun, and Y.H. Xu, Effect of surface work hardening on wear behavior of Hadfield steel, Mater. Sci. Eng. A, 460(2007), p. 542.

    Article  Google Scholar 

  14. Y.N. Dastur and W.C. Leslie, Mechanism of work hardening in Hadfield manganese steel, Metall. Trans. A, 12(1981), No. 5, p. 749.

    Article  Google Scholar 

  15. S. Hofer, M. Hartl, G. Schestak, R. Schneider, E. Arenholz, and L. Samek, Comparison of austenitic high–Mn–steels with different Mn–and C–contents regarding their processing properties, BHM Berg–Huttenmann. Monatsh., 156(2011), No. 3, p. 99.

    Google Scholar 

  16. S.M. Anijdan, M. Sabzi, M. Ghobeiti–Hasab, and A. Roshan–Ghiyas, Optimization of spot welding process parameters in dissimilar joint of dual phase steel DP600 and AISI 304 stainless steel to achieve the highest level of shear–tensile strength, Mater. Sci. Eng. A, 726(2018), p. 120.

    Article  Google Scholar 

  17. C. Iglesias, I.G. Solórzano, and B.J. Schulz, Effect of low nitrogen content on work hardening and microstructural evolution in Hadfield steel, Mater Charact., 60(2009), No. 9, p. 971.

    Article  Google Scholar 

  18. T. Kıvak, Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts, Measurement, 50(2014), p. 19.

    Article  Google Scholar 

  19. E. Bayraktar, F.A. Khalid, and C. Levaillant, Deformation and fracture behaviour of high manganese austenitic steel, J. Mater. Process. Technol., 147(2004), No. 2, p. 145.

    Article  Google Scholar 

  20. D. Canadinc, H. Sehitoglu, and H.J. Maier, The role of dense dislocation walls on the deformation response of aluminum alloyed Hadfield steel polycrystals, Mater. Sci. Eng. A, 454(2007), p. 662.

    Article  Google Scholar 

  21. S.H.M. Anijdan and M. Sabzi, The evolution of microstructure of an high Ni HSLA X100 forged steel slab by thermomechanical controlled processing, [in] TMS Annual Meeting & Exhibition, Cham, 2018, p. 145.

    Google Scholar 

  22. I. Karaman, H. Sehitoglu, Y.I. Chumlyakov, H.J. Maier, and I.V. Kireeva, Extrinsic stacking faults and twinning in Hadfield manganese steel single crystals, Scr. Mater., 44(2001), No. 2, p. 337.

    Article  Google Scholar 

  23. D. Canadinc, H. Sehitoglu, H.J. Maier, and Y.I. Chumlyakov, Strain hardening behavior of aluminum alloyed Hadfield steel single crystals, Acta Mater., 53(2005), No. 6, p. 1831.

    Article  Google Scholar 

  24. M. Sabzi, A. Obeydavi, and S.H.M. Anijdan, The effect of joint shape geometry on the microstructural evolution, fracture toughness, and corrosion behavior of the welded joints of a Hadfield steel, Mech. Adv. Mater. Struct., (2018), p. 1. https://doi.org/10.1080/15376494.2018.1430268.

    Google Scholar 

  25. S. Hosseini and M.B. Limooei, Optimization of heat treatment to obtain desired mechanical properties of high carbon Hadfield steels, World Appl. Sci. J., 15(2011), No. 10, p. 1421.

    Google Scholar 

  26. S. Hosseini, M.B. Limooei, M.H. Zade, E. Askarnia, and Z. Asadi, Optimization of heat treatment due to austenising temperature, time and quenching solution in Hadfield steels, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 7(2013), No. 7, p. 582.

    Google Scholar 

  27. I.U.H. Toor, Effect of Mn content and solution annealing temperature on the corrosion resistance of stainless steel alloys, J. Chem., 2014(2014), p. 1.

    Article  Google Scholar 

  28. Y.K. Lee and C.S. Choi, Driving force for γ→ε martensitic transformation and stacking fault energy of γ in Fe−Mn binary system, Metall. Mater. Trans. A, 31(2000), No. 2, p. 355.

    Article  Google Scholar 

  29. T.E. Abioye, P.K. Farayibi, D.G. McCartney, and A.T. Clare, Effect of carbide dissolution on the corrosion performance of tungsten carbide reinforced Inconel 625 wire laser coating, J. Mater. Process. Technol., 231(2016), p. 89.

    Article  Google Scholar 

  30. S.H.M. Anijdan, M. Sabzi, M.R. Zadeh, and M. Farzam, The effect of electroless bath parameters and heat treatment on the properties of Ni−P and Ni−P−Cu composite coatings, Mater. Res., 21(2018), No. 2, p. 1.

    Article  Google Scholar 

  31. J. Li, J.S. Wu, Z. Wang, S.Q. Zhang, X.G. Wu, Y.H. Huang, and X.G. Li, The effect of nanosized NbC precipitates on electrochemical corrosion behavior of high–strength low–alloy steel in 3.5% NaCl solution, Int. J. Hydrogen Energy, 42(2017), No. 34, p. 22175.

    Article  Google Scholar 

  32. J. Sanchez, J. Fullea, and C. Andrade, Corrosion–induced brittle failure in reinforcing steel, Theor. Appl. Fract. Mech., 92(2017), p. 229.

    Article  Google Scholar 

  33. T.R. Tamilarasan, U. Sanjith, M.S. Shankar, and G. Rajagopal, Effect of reduced graphene oxide (rGO) on corrosion and erosion–corrosion behaviour of electroless Ni−P coatings, Wear, 390 (2017), p. 385.

    Google Scholar 

  34. D.J. Blackwood, C.S. Lim, S.L.M. Teo, X.P. Hu, and J.J. Pang, Macrofouling induced localized corrosion of stainless steel in Singapore seawater, Corros. Sci., 129(2017), p. 152.

    Article  Google Scholar 

  35. J.H. Hong, S.H. Lee, J.G. Kim, and J.B. Yoon, Corrosion behaviour of copper containing low alloy steels in sulphuric acid, Corros. Sci., 54(2012), p. 174.

    Article  Google Scholar 

  36. R.Q. Hou, C.Q. Ye, C.D. Chen, S.G. Dong, M.Q. Lv, S. Zhang, J.S. Pan, G.L. Song, and C.J. Lin, Localized corrosion of binary Mg−Ca alloy in 0.9wt% sodium chloride solution, Acta Metall. Sinica (Engl. Lett.), 29(2016), No. 1, p. 46.

    Article  Google Scholar 

  37. M.L.C. Lim, R.G. Kelly, and J.R. Scully, Overview of intergranular corrosion mechanisms, phenomenological observations, and modeling of AA5083, Corros. Sci., 72(2016), No. 2, p. 198.

    Google Scholar 

  38. M. Sabzi, S.H.M. Anijdan, and M. Asadian, The effect of substrate temperature on microstructural evolution and hardenability of tungsten carbide coating in hot filament chemical vapor deposition, Int. J. Appl. Ceram. Technol., 15(2018), No. 6, p. 1350.

    Article  Google Scholar 

  39. S.M. Dezfuli and M. Sabzi, A study on the effect of presence of CeO2 and benzotriazole on activation of self–healing mechanism in ZrO2 ceramic–based coating, Int. J. Appl. Ceram. Technol., 15(2018), No. 5, p. 1248.

    Article  Google Scholar 

  40. M. Sabzi, S.H.M. Anijdan, M.R. Zadeh, and M. Farzam, The effect of heat treatment on corrosion behaviour of Ni−P−3 gr/lit Cu nano–composite coating, Can. Metall. Q., 57(2018), No. 3, p. 350.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Sabzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabzi, M., Far, S.M. & Dezfuli, S.M. Effect of melting temperature on microstructural evolutions, behavior and corrosion morphology of Hadfield austenitic manganese steel in the casting process. Int J Miner Metall Mater 25, 1431–1438 (2018). https://doi.org/10.1007/s12613-018-1697-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-018-1697-1

Keywords

Navigation